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Abstract

With the surge in popularity of wearable technologies a

large percentage of the US population is now tracking

activities such as sleep, diet and physical exercise. In this

study we empirically evaluate the ability to predict metrics

(e.g., weekly alcohol consumption) directly related to health

outcomes from densely sampled, multi-variate time series

of behavioral data. Our predictive models are based on

temporal convolutional neural networks and take as input

the raw historical time series of daily step counts, sleep

duration, and weight scale usage sourced from an online

population of thousands of digital trackers. The prediction

accuracy achieved outperforms several strong baselines that

use hand-engineered features and indicates that tracker data

contains valuable information on individuals’ lifestyles even

for behavioral aspects seemingly unrelated to the measured

quantities. We believe that this insight can be applied to the

design of new digital interventions and enable future large-

scale preventive care strategies.

Keywords Digital health, activity tracking, be-
havioral phenotyping, mHealth, temporal convolutional
neural networks.

1 Introduction

It is estimated that 69% of the U.S. population keeps
track of their weight, diet, or exercise routine, and 20%
of trackers claim to leverage technology such as digital
health devices and apps to perform self-monitoring [9,
28]. With tech giants like Apple and Google entering the
arena of wearable technologies, the market for activity
trackers and wearable devices is projected to increase to
more than $50 billion by 2018 [33].

Not only has the number of digital health trackers
surged in recent years, the breadth of measures these
devices can quantify has also dramatically expanded.
The last Consumer Electronic Conference held every
year in Las Vegas [1] featured consumer-grade sensors
able to continuously capture hemoglobin, arterial oxy-
gen saturation (SpO2), pulse rate (PR), perfusion in-
dex (PI), and Plethysmograph Variability Index (PVI).
With these new additions, the digital tracker ecosystem
starts resembling the capabilities of the sensor arrays
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found in ICU rooms [19], and constitutes a significant
step forward from pedometers and calorie counters that
have become prevalent in smartphones and watches.

While it is disputed whether digital health tracking
alone can lead to healthier behavior in the adopter [24],
it is clear that the wealth of information provided by the
trackers, however inaccurate [20], can be predictive of
lifestyle. In our recent study [29] we provided evidence
of this fact by showing that changes in an individual’s
adherence to weight tracking and food logging are
predictive of weight change over time.

A large body of empirical evidence demonstrates
that lifestyle plays an important role in long term health
outcomes [8, 25, 32]. An illustrative example for the case
of cardiovascular diseases is the Harvard Healthy Heart
Score survey [2], which calculates a Cardiovascular
Lifestyle Risk Score based on lifestyle habits such as
smoking, physical activity, and diet. Some of the
questions on the survey, such as, “During the past year,
what was your average time per week spent on walking
(slower than 3 miles per hour),” can be immediately
answered by the step count reported by a pedometer.
Other questions, such as the lifestyle ones pertaining to
alcohol consumption habits, cannot be directly inferred
from tracker summary statistics.

That said, the temporally dense information
recorded by digital trackers contain more complex pat-
terns. For example, a decrease in sleep duration on
Friday nights and corresponding lower step counts in
the following day may correlate with a weekly habit of
partying–a pattern that might go undetected when only
looking at summary statistics of the sleep duration or
the step counts taken in isolation–and may be a good
predictor of increased weekly alcohol consumption.

1.1 Contribution In this work we extend the anal-
ysis of Pourzanjani et al. [29] in the pursuit of clos-
ing the gap between behavioral phenotyping and health
outcomes. From an outcome perspective, we focused
on metrics known to be important predictors of future
health:

• Their (measured) Body-Mass Index;

• The (self reported) frequency of weekly alcohol
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consumption;

• The (measured) propensity to increase their level of
physical exercise as a result of a digital intervention.

The Body-Mass Index (BMI) is strongly correlated with
other aspects of an individual’s health and abnormali-
ties are estimated to cost 21% ($190.2 billion) of an-
nual medical spending in the United States [6]. Simi-
larly, immoderate alcohol consumption and lack of phys-
ical exercise are associated with unfavorable health out-
comes [8, 25, 30].

From a methods perspective, we present a model
based on a temporal Convolutional Neural Network
(CNN) that allows for prediction of the outcome vari-
ables from the raw time series recorded by the digital
health trackers: daily step count, sleep duration, and
weight scale utilization (i.e., whether or not the indi-
vidual has weighed themselves on a given day).

We show that the CNN approach matches or out-
performs several strong baselines that leverage hand-
engineered features, in line with the same ground-
breaking advances that representation learning and un-
supervised feature discovery via deep learning have
brought to image processing [16], speech recogni-
tion [10], and natural language processing [22].

Finally, we show that the performance of the CNN
model is robust to the imputation strategy used for the
time series, in line with the hypothesis of Razavian et
al. [31] who argue that missing values do not constitute
a major concern in temporally dense time series, such
as the ones under study.

2 Related work

The task of deriving observable physiological traits from
clinical data is generally termed phenotyping [26]. Al-
though phenotyping has become an established prac-
tice in medical machine learning, to the best of our
knowledge this is the first attempt at extracting phe-
notypes from behavioral data to predict health-related
outcomes. In [29], Pourzanjani et al. showed that fre-
quency of weight tracking and gaps in tracking behav-
ior are predictive of an individual’s weight change. The
methodologies used in their work only considered tem-
poral summary statistics such as the frequency and gaps
between reported measurements, computed separately
on a single time series, and predicted a single outcome.
On the contrary, the method presented in this paper
uses as input the raw multivariate time-series of digi-
tal health measurements and considers several diverse
health-related outcome variables. From a methods per-
spective, the present work shares commonalities with
the machine learning research focused on phenotyping
of medical data, but while in general medical settings

observations such as vital signs, lab test results, and
subjective assessments are sampled irregularly [21], be-
havioral data recorded by digital health trackers is dense
and recorded at least with daily frequency.

In the medical machine learning community, several
recent works have addressed the topic of phenotyping of
clinical data. In their recent work [31], Razavian et al.
use a multi-resolution CNN to perform early detection
of multiple diseases from irregularly measured sparse lab
values. We benefit from the same ease of interpretability
of the learned model brought about by the temporal
convolutional approach, however, as Razavian et al.
argue in their paper, their method focuses more on
devising a highly refined imputation strategy to cope
with missing data, a problem far less common on digital
health data.

Another very recent work by Lipton et al. [19], uses
Long Short-Term Memory (LSTM) networks, a variant
of Recurrent Neural Networks (RNNs), to identify pat-
terns and classify 128 diagnoses from multivariate time
series of 13 frequently but irregularly sampled clinical
measurements. As pointed out in [31], it is not clear
whether the long-term dependencies that RNNs very ef-
fectively model are necessary in contexts similar to the
one under study.

Neural networks in general have a long history of ap-
plications in the medical domain [3, 5]. More recently,
deep learning has been applied to assess Parkinsons Dis-
ease [12] and feed-forward networks have been applied
to medical time series for gout, leukemia, and critical
illness classification [7, 17]. Finally, non-neural-network
based techniques have been leveraged to perform clas-
sification of multi-variate time-series in the medical do-
main. See [23] for a review.

3 Data

The source of our data is AchieveMint1, a consumer
rewards platform for healthy activities powered by Ev-
idation Health2. The AchieveMint platform automat-
ically collects data (e.g., step counts) from its users’
digital trackers and aggregates it into their accounts
rewarding health related activities (e.g., a run) with
points. We considered binary classification tasks on
three datasets. Each dataset is composed of pairs of
multivariate time series and binary labels, each pair
associated with a di↵erent individual. The multivari-
ate time series for a given individual contained a his-
tory (di↵erent lengths were used in di↵erent datasets)
of daily step counts, sleep durations, and interactions
with a connected scale (a binary indicator whose value

1http://www.achievemint.com
2http://www.evidation.com
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is 1 if the user weighed themselves through a connected
scale, and 0 otherwise). All the time series measure-
ments were passively recorded by the relevant tracker
(i.e., pedometer, sleep trackers, scale); none of them was
self-reported. A detailed description of each dataset and
prediction task is provided below:

Uptake The dataset consists of 1,996 users who
took part in an IRB-approved study designed to increase
the level of physical activity through small monetary
incentives. Over the two-week intervention period,
the groups were o↵ered the same average incentives
for physical activity. We considered a subset of the
users in the experimental arms (the control group did
not undergo the intervention) that have a history of
measurements of at least 147 days. We assigned a
positive label to users whose median daily step count
during the intervention period had shown an uptake of
more than 2,000 steps/day3 compared to the median
pre-intervention. This resulted in 22% positive labels.
A visual representation of the daily step count histories
for a few hundred users is shown in Figure 1.

BMI The dataset consists of 1,978 AchieveMint
users who have shared their BMI measurements (weight
reported by a connected scale, height self-reported). We
assigned a positive label to users with BMI higher than a
chosen clinically relevant threshold [34], which resulted
in 44% positive labels.

Alcohol The dataset consists of 815 users that
agreed to participate in a one-click survey answering the
lifestyle question “On average, do you have more than
one drink per week?” inspired by the Healthy Heart
Survey [2]. We assigned a positive label to the users
who answered the question positively, which resulted in
33% positive labels.

4 Methods

We learned a binary classifier to generate estimates ŷu of
the true labels yu for each user u from the multivariate
time series of observations for the time period T , Xu =
x1, . . . , xT . Each observation xt is a vector of size K,
representing one of the K behavioral biomarkers (in our
case, K = 3: step count, sleep duration in hours, and
binary indicator of weight measurement) recorded for a
given day.

Our temporal convolution model is shown in Fig-
ure 2. The input to the model can be raw (un-imputed)
observations, imputed observations, or the concatena-
tion of imputed data and the binary observation pat-
tern.

Following Zheng et al. [35] each time series is fed

3Considered an increased in activity that when sustained in
the long term can provide health benefits [30]

Figure 1: Heatmap for a few hundred users of the
Uptake dataset. Brighter pixels correspond to higher
step counts. The darker band on top represent marks a
period of low activity during the winter holidays

separately to a two-stage univariate feature extraction,
where each stage is composed of a convolution filter
followed by a Max-pooling layer and sigmoid layer
(unlike [35], which uses avg-pooling).

The output of the feature extraction layers is flat-
tened and fed to a standard fully connected MLP with
hidden layer for classification [18].

The specific architectural choices for the shared
part of the prediction network is as follows: we set the
number of filters to be 8 for the first convolution layer
and 4 for the second, with a kernel length of 7 for the
first layer and 5 for the second layer and step size of 1
for all convolutional layers. Each Max-pooling layer has
a length of 2 with step size of 2 (i.e. no overlap). Each
convolution layer is followed by a Sigmoid nonlinearity
(sigmoid(t) = 1

1+e�t ).
We added 1 fully connected hidden layer with 300

nodes after the concatenation of outputs of all convo-
lution layers. After the last Sigmoid layer correspond-
ing to the output of the shared part of the network we
added a fully connected layer (of the size of 2 nodes
corresponding to binary outcome) and a Log Softmax
Layer in this order. We use ADAM [15] instead of SGD
for parameter updates.

The loss function for each label is the neg-
ative log likelihood of the true label: L =
�
P

u2U

P
c20,1 yc,u log ˆyc,u. Each gradient is back-

propagated throughout the entire prediction network.
We set the momentum to 0.9, use a fixed lr of

0.005, and set a 0.003 weight decay. The Alcohol

task required a 0.006 weight decay to avoid overfitting,
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since it is a smaller dataset.
We implemented our model in the Ca↵e [14] envi-

ronment.

5 Results

The CNN model is fed the imputed times series (using
linear imputation). We found that mean-centering each
day of a time series before imputation, so that the mean
across users is zero for each given day, significantly
improved the results.

To test the robustness of our model to missing val-
ues, we considered a variant of the model, CNN-U, in
which each input time series is augmented with its uti-
lization signal: a time series of binary indicators encod-
ing whether the data for a given day was missing and
had been imputed. Input time series that are already
utilization signals, such as the weight measurement one,
are not augmented.

In Table 1 we reported the mean area under the
ROC curve (AUC) over 4 cross-validated folds for the
three datasets. Given the small size of our datasets, a
4-fold cross-validation mean AUC provides more robust
and stable results. We compared the two convolutional
neural network approaches with several baseline mod-
els (logistic regression, random forest (RF) and SVM
classifiers) trained on hand-engineered features. Follow-
ing [7, 19, 21] the features we computed for each variable
are the mean, standard deviation, median, quartiles,
minimum, maximum, and a count of non-missing val-
ues. Hyperparameters for the baseline models trained
on the hand-engineered features were tuned using ran-
dom search [4]. The SVM hyperparameter search space
was derived from [13].

CNN CNN-U logistic RF SVM
Uptake 0.699 0.698 0.629 0.622 0.611
BMI 0.640 0.639 0.653 0.654 0.648
Alcohol 0.549 0.552 0.526 0.551 0.526

Table 1: 4-fold cross-validated AUC for the three
datasets. CNN is the temporal convolutional model
that takes as input the linearly imputed time series.
CNN-U takes the step count and sleep utilization time
series as additional inputs. Logistic, random forest
(RF) and SVM models are trained on hand-engineered
features.

We observed that the CNN models significantly out-
perform the baseline ones on the Uptake dataset and
slightly on the Alcohol dataset. We also note that the
AUC values reported demonstrate that daily recordings
of step counts, sleep duration, and scale usage, however
inaccurate, are predictive of an individual’s overall be-

havior, even for health-related properties not directly
related to the observed variables.

Unlike other neural network based models, CNNs
provide direct interpretability of the learned models.
The weekly trends learned by the CNN in the first layer
convolutional filters for the step count biomarker are
reported in Figure 3.

Figure 3: Convolution weights learned by the CNN on
the step count time series of the Uptake dataset. Each
graph shows the 7 learned weights for each of the nodes
in the first convolutional layer for step counts.

Since our dataset is small when compared to
datasets found in common deep learning tasks, regu-
larization heavily a↵ects the results. Figure 4 shows
the learning curves for both CNN models and demon-
strates that the regularization parameters used success-
fully avoid overfitting.

Figure 4: Training set softmax loss and testing set AUC
vs. training epocs for the Uptake dataset. The curves
demonstrates that the regularization employed success-
fully prevents overfitting. In addition, the negligible
di↵erence between CNN and CNN-U highlights the ro-
bustness of the model to imputation.
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Figure 2: The temporal CNN architecture. Each behavioral biomarker time series is fed through the convolutional
layer separately. The output layer, the only one label-specific, is a Log SoftMax classifier.

6 Conclusion and Future work

The results presented in this paper indicate that a
temporal convolutional neural network learned on raw
time series of data streamed directly from digital health
trackers can accurately predict important health-related
variables.

Our models’ automatic behavioral phenotyping has
many potential applications: (1) it can be used to
passively infer lifestyle choices of individuals with the
goal of complementing, or even replacing, surveys (e.g.,
[2]) that must actively acquire such data to determine its
relationship with disease risk factors; (2) it can be used
to augment models based on more traditional medical
data sources [31] to further improve medical decision
making; and (3) the learned phenotypes can be used to
optimize behavior-changing interventions [11, 27] with
the goal of proactively addressing high-risk behaviors.
The high accuracy achieved on predicting the propensity
of individuals to increase their physical activity as a
result of a digital intervention can improve targeting
decisions for interventions. More-sophisticated, higher-
cost interventions (e.g., in-person coaching) can be
targeted to individuals identified as less inclined to
improve, while simpler and more cost-e↵ective strategies
(e.g., an email reminder) can be su�cient for those who
display a higher propensity to change.

Possible extensions to our approach include improv-
ing the performance of the network by further tuning
its architecture and testing it on a larger set of input
variables, including fixed-time ones (e.g., demograph-
ics). The model could also benefit from more sophisti-

cated imputation strategies (e.g., [31]) and modules that
encode longer terms dependencies (e.g., by multiresolu-
tion approach as in [31] or using RNN-like techniques,
such as in [19]).

References

[1] Ces 2016: Running list of health and wellness
devices. http://mobihealthnews.com/content/

ces-2016-running-list-health-and-wellness-devices.
Accessed: 2016-01-13.

[2] Harvard healthy heart score. https://

healthyheartscore.sph.harvard.edu/. Accessed:
2016-01-17.

[3] W. G. Baxt. Application of artificial neural networks
to clinical medicine. The lancet, 346(8983):1135–1138,
1995.

[4] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13.

[5] R. Caruana, S. Baluja, T. Mitchell, et al. Using the
future to” sort out” the present: Rankprop and multi-
task learning for medical risk evaluation. Advances in
neural information processing systems, pages 959–965,
1996.

[6] J. Cawley and C. Meyerhoefer. The medical care
costs of obesity: an instrumental variables approach.
Journal of health economics, 31(1):219–230, 2012.

[7] Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu.
Deep computational phenotyping. In Proceedings of
the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 507–516.
ACM, 2015.

63



[8] S. E. Chiuve, M. L. McCullough, F. M. Sacks, and
E. B. Rimm. Healthy lifestyle factors in the primary
prevention of coronary heart disease among men ben-
efits among users and nonusers of lipid-lowering and
antihypertensive medications. Circulation, 114(2):160–
167, 2006.

[9] S. Fox and M. Duggan. Tracking for health. Pew
Research Center’s Internet & American Life Project,
2013.

[10] A. Graves and J. Schmidhuber. Framewise phoneme
classification with bidirectional lstm and other neural
network architectures. Neural Networks, 18(5):602–
610, 2005.

[11] D. Halpern. Inside the Nudge Unit. Random House,
2015.

[12] N. Y. Hammerla, J. M. Fisher, P. Andras, L. Rochester,
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