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ABSTRACT

Players across the health ecosystem are initiating studies of thou-

sands, even millions, of participants to gather diverse types of data,

including biomedical, behavioral, and lifestyle in order to advance

medical research. These e�orts to collect multi-modal data sets on

large cohorts coincide with the rise of broad activity and behav-

ior tracking across industries, particularly in healthcare and the

growing �eld of mobile health (mHealth). Government and phar-

maceutical sponsored, as well as patient-driven group studies in

this arena leverage the ability of mobile technology to continuously

track behaviors and environmental factors with minimal participant

burden. However, the adoption of mHealth has been constrained

by the lack of robust solutions for large-scale data collection in

free-living conditions and concerns around data quality.

In this work, we describe the infrastructure Evidation Health has

developed to collect mHealth data from millions of users through

hundreds of di�erent mobile devices and apps. Additionally, we

provide evidence of the utility of the data for inferring individual

traits pertaining to health, wellness, and behavior. To this end, we

introduce and evaluate deep neural network models that achieve

high prediction performance without requiring any feature engi-

neering when trained directly on the densely sampled multivariate

mHealth time series data.

We believe that the present work substantiates both the feasibil-

ity and the utility of creating a very large mHealth research cohort,

as envisioned by the many large cohort studies currently underway

across therapeutic areas and conditions.
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1 INTRODUCTION

Major advancements in the prevention and treatment of diseases

have stemmed from a better understanding of the factors con-

tributing to health and disease in individual patients. Under this

premise precision medicine has become the main idea by which

“treatment and prevention can be maximized by taking into account

individual variability in genes, environment, and lifestyle” [17].

In recent years, the advent and rapid adoption of mobile health
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(mHealth) enabled by wearable technologies have made continu-

ous monitoring of environment and lifestyle (“life logging” [25]) a

concrete possibility. It is estimated that 69% of the U.S. population

keeps track of their weight, diet, or exercise routine, and 20% of

such life loggers report leveraging technology such as digital health

devices and apps to perform self monitoring [16].

mHealth data holds great promise for characterizing the envi-

ronmental and lifestyle factors driving health outcomes outside tra-

ditional points of care. However, due to the novelty of the mHealth

domain, the data that has been collected and published today largely

comprises populations too small and with too short a duration to

e�ectively capture the weak signals linking behavior to longer term

health outcomes [15]. Much of the data is gathered in modestly

sized trials [3, 39], often testing condition-speci�c hypotheses in

controlled settings that are hard to generalize to a large-scale online

population of healthy subjects.

Overcoming such limitations have driven recent e�orts to scale

research towards recruiting massively large patient cohorts, in-

cluding some that enroll hundreds of thousands of participants,

virtually without requiring visits at a care center. The Precision

Medicine Initiative Cohort Program (PMI-CP) [17], Million Veteran

Program [12], My Research Legacy [2], and Project Baseline [44]

represent the culmination of such e�orts across various health

players in the United States. In the case of PMI-CP, the goal is

to create and manage a national, large-scale research participant

group of 1 Million patients or more. Data that participants consent

for research use will include demographics, self reported measures

(PROs), electronic health records, claims data, physician notes, lab

tests and other biospecimen, and mHealth data (See Group et al.

[17], Table 5.1.)

However, challenges with the con�guration of technology around

the collection and use of mHealth data have been identi�ed. For

example, while the PMI-CP Working Group has recommended that

mHealth data should not be required for enrollment, they also state

in their �nal report that “despite limited standardization of mHealth

technologies, particularly commercial sensors, and a number of

competing technologies, early acquisition of such data will enable

exploration of use cases and facilitate building the infrastructure

to handle the scale and collection of such data.” ([17], Section 5.B).

Perhaps even more concerning, skepticism around the value of the

collected data has been expressed in the clinical community, with

speci�c concerns around biases and accuracy [6].

1.1 Contribution

In the �rst part of the paper we describe the technology infras-

tructure developed at Evidation Health to perform data collection

and normalization while honoring user preferences on sharing and

collection modalities. We address challenges that are speci�c to

this data collection approach, data reliability, lack of continuous

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1971



Figure 1: End-to-end data �ow from the end user to the collection platform data storage.

connectivity, and data sanitization. The presented infrastructure

is able to ingest data from millions of users on hundreds of di�er-

ent devices and apps with minute-level granularity in real time,

and scales horizontally. We also describe some key learnings that

hopefully can bene�t the community and institutions deciding to

embark on similar e�orts.

In the second part of this work, we show how to leverage the

collected data to perform large observational cohort studies. By

framing our investigation as a set of supervised learning tasks,

we show that mHealth data collected in a free-living environment

has signi�cant power to predict traits associated with wellness

(BMI, weekly alcohol intake), lifestyle (food diary habits and scale

utilization) and even behavioral traits (propensity to comply to

an intervention, activity on a �tness-related social network). We

have further extended our �ndings since the preparation of this

manuscript by considering clinically-relevant traits such as self-

reported chronic conditions [35, 36].

From a methods perspective, we show that deep neural network

models (both convolutional and recurrent) achieve the best overall

performance, outperforming models based on hand-engineered fea-

tures. This indicates that mHealth data is fertile ground for deep

learning techniques, which have the potential to bring the same

ground-breaking advances that representation learning and unsu-

pervised feature discovery have brought to other domains charac-

terized by dense, continuous signals measured over time. Feature

learning is especially valuable in a novel �eld such as mHealth,

where feature engineering and a principled choice of generative

model story are not nearly as developed as they are for clinical

problems and data. Finally, we show that deep neural networks

methods have the potential to learn relevant features transferable
across data sets via a modi�ed version of multi-task learning [5, 37].

This �nding can prove bene�cial in improving learning on di�er-

ent, not necessarily overlapping sub-cohorts of the same collection

cohort considered for di�erent analyses.

2 DATA ARCHITECTURE

The architecture we now describe has been deployed in production

environments by Evidation Health to collect data from mHealth

apps and devices from million of users over the the course of the last

�ve years. The main challenge we had to address in developing the

architecture was to cope with the fragmentation of the device and

app space. Numerous commercial hardware manufacturers entered

the mHealth space in recent years. The most well-known are Fitbit,

Garmin, and recently Apple, but less-known ones, such as Fitbug,

Striiv or Mis�t, have been quickly catching up with more a�ordable

devices o�ering similar functions. Manufacturers frequently have

dozens (if not hundreds, as in Garmin’s case) of devices models and

continuously update them with improved sensors, new features,

and software updates. For example, devices such as blood pressure

monitors generally return only a few �xed quantities (e.g., systolic

and diastolic pressure, heart rate) whereas smart watches and wrist-

bands track a variety of parameters that range from steps taken and

hours slept, to heart rate variability. As of today, the platform is

capable of ingesting more than 40 types of activities (e.g., running,

biking, medications taken and glucometer readings), each able to

provide more than 50 di�erent quantities (e.g., duration, distance,

quantity, measurement) tracked through hundreds of devices and

apps.

2.1 Data Collection

A diagram of the data collection �ow is reported in Figure 1. Raw

data is collected from the user either passively (e.g., via accelerom-

eters, GPS) or actively by self report from the user. Collection hap-

pens either through a custom device (e.g., a wristband) or the mobile

phone of the user. In the case of an external device data producer,

a companion application is also involved. Device applications are

generally lightweight and do not usually perform any intensive

computation. Their purposes are mainly: (1) collect the data from

the device, (2) visualize it for the user (e.g., dashboard of steps taken,

miles run, etc.) and (3) transmit it to a central server under the con-

trol of the app developer or device manufacturer for storage and

further processing.
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Figure 2: Strategies for handling unreliable data streams

While often overlooked, the design and quality of the companion

application is of crucial importance for any data gathering plat-

form. Data must be transferred from the device to the application

(e.g., using Bluetooth), and then from the application to the central

servers before any third party data gathering platform can retrieve

it. If connectivity issues or software bugs in the application a�ect

this process, the local user’s view and what a third party may have

collected and visualized will mismatch. Addressing these issues

requires both a transparent user interface to avoid user confusion

and a mechanism for keeping the platform’s view of the data as up

to date as possible while minimizing requests to the central servers.

Figure 2 depicts the platform data synchronization strategy. Typical

operations involve normal updating (1b), a strategy that repeatedly

requests current data everym minutes.m is set adaptively for each

user and device pair, and it is increased in case the manufacturer’s

global or per-user download rate limits are close to being reached,

or if the user views their data less frequently on the platform. An

error checking strategy (1a) is also employed, which uses excess

capacity within the rate limits to double check old values for silent

revisions. Past missing data is challenging to detect, as it is some-

times explicitly signaled during API requests with error responses,

while in other cases it is implicitly signaled by 0 values. In these

cases, a periodic re-request strategy (2a) is employed, which repeat-

edly retries data fetches with exponential backo�. Missing data can

also occur contiguously at the most-recent end of the time series,

in which case it may depend on the user having stopped to use

the app/device, or the user having temporarily lost connectivity

and the missing days to eventually be �lled in. The recent missing

data strategy (3a) repeatedly re-requests recent missing days with a

bias towards the most recent days. The bias allows the algorithm to

quickly detect the common case of a temporary stop. The strategy

also performs exponential backo�, ensuring that limited resources

are not spent re-requesting data in the case of a permanent stop.

Finally, if new data is eventually found, all recent missing days are

re-requested to handle the temporary loss-of-connectivity case, and

any remaining missing days are handed o� to the past missing data

strategy (2a).

Figure 3: Example of authorization �ow using OAUTHv2

2.2 Authorization

Independently from how the data is accessed and formatted, a

data gathering platform needs proper authorization to access user

data. Although some outdated health applications require users to

share their usernames and passwords with the third party platform,

thereby exposing the users to risk with insecure connections, most

health application favors some implementation of the OAUTH

standard [18] to delegate authorization privileges. OAUTH provides

a token with a set expiration date and restricted privileges to the

third party platform from which it obtains limited access to the

user’s data. In the most common implementation of this standard,

the developer redirects users to the manufacturer’s website, where

they are asked to login and authorize the third party to obtain

the data; once that is con�rmed, the user is redirected back to

a prede�ned URL on the developer’s site with special code as a

parameter, which the developer’s site can exchange for an access

token contacting the central server (see Figure 3).

Often times, device and apps APIs implement custom versions

of the OAUTH standard. Furthermore, the OAUTH standard alone

introduces some confusion by providing two major versions that

are mutually incompatible. Manufacturers usually incrementally

move towards a standard OAUTH �ow, and then to OAUTHv2 [19],

each time invalidating access tokens. Additionally, OAUTH access

tokens can expire, be revoked or get out of sync, causing major

problems to the data gathering process that in some cases can only

be resolved asking the user to reconnect their device or application

with the platform. We have observed that most of APIs expire

access tokens at least once a year, and on average after a month of

inactivity. Over a the course of �ve years, for the top largest device

manufacturer Evidation supports, we have witnessed at least two

major service disruptions involving tokens being revoked for more

than 10% of all connected devices on our platform, requiring users

to reconnect their device.

2.3 Scalability

Processing steps such as de-duplication, �ltering and parsing in-

volve mostly CPU-bounded operations on each user’s data streams
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considered in isolation. This enables horizontal scaling of the data

ingestion process described, allowing for elastic deployments that

can increase the number of data processing units when needed.

However, to further reduce computing resources and unnecessarily

overloading the database we employ several optimization strategies,

some of which are listed below.

Response Signatures. Some APIs allow to request for multiple

days of data, while others may include large amounts of data (e.g.,

minute level data) in their replies, thus signi�cantly increasing the

size of the responses. While compression algorithms such as GZIP

can help reduce data transfer times, decompressing the response

will use CPU resources. Furthermore, the response format (e.g.,

JSON) needs to be interpreted, activities need to be parsed, and data

need to be compared (and updated) in the database. Responses that

are empty or contain data already fetched waste computational

resources. To avoid this, we keep around per-user signatures of the

responses returned for each request and abort decompressing and

parsing if the responses match the previous one. For most services

this reduces the CPU utilization by approximately 40%.

Data Signatures. In some cases the response of the server con-

tains some identi�er or timestamp that invalidates response signa-

tures, thus requires decompressing and parsing the content. How-

ever, when the response is parsed, it may be still be the case that the

data returned still matches that stored in the database. In a high con-

currency environment limiting the number of hits to the database

is important, especially when done to check for changes in the data

or to update the data. To improve this data path we keep around

a signature of the values parsed for each activity and we con�rm

that it changed before going to the database. Moreover, whenever

we need to store the update in the database we take advantage of

the UPSERT command o�ered by recent databases requiring only 1

hit for both INSERTs and UPDATEs. These optimization removed

about 60% of database hits.

Data Noti�cations. To minimize the number of unnecessary pull

requests most modern service APIs allow clients to subscribe to

noti�cations triggered by updates in user’s data. These noti�cations

are generally sent with "best-e�ort" (i.e., may not be sent for all

updates) but their intent is to allow clients to optimize data requests

to the API. This functionality was appreciated in past years when

syncing a device was more inconvenient and required a physical

connection to a computer via some sort of cable, but today’s de-

vices and apps often keep very frequent communication with their

servers (e.g., during a user physical activity) which in turn gener-

ates �oods of noti�cations. Processing these noti�cations require

computing power both in the front-end (e.g., receive the request,

parse the message, schedule the appropriate action) and the back-

end (e.g., fetch new data, parse response, update database). During

certain activities noti�cations can be received every minute, gen-

erating lots of work for often small and barely signi�cant updates.

To optimize this part of the work-�ow we employ algorithms that

detect surges in noti�cations related to a user and make sure that

no more than one every 12 minutes is executed. During time of

intense activity this helps us cut about 80% of tra�c.

Collectively, the optimizations described signi�cantly reduces

the fraction of data fetches that result in a database update. How-

ever, it is also important to limit requests to data producer servers,

which enforce rate limiting policies that vary signi�cantly across

data providers. The ingestion system must honor these limitations

and correctly handle the error messages, throttling the number of

requests when necessary.

Data providers generally enforce two kinds of rate limiting: a

per-user quota (maximum number of requests for a given user per

hour) and a global quota (maximum number of request per hour

across all users). To convey the best user experience, data must

continuously be polled from a data provider to provide users with

the most up to date view of their activity. Given the global quota

constraint, as the population serviced scales, it becomes paramount

to be able prioritize more frequent refreshes for users that are more

active. We implemented such a prioritization by doubling the delay

between consecutive updates for the same user whenever the value

returned from a poll to the data provider (e.g., the number of steps

taken) is unchanged, up to the maximum delay of one day. Such a

policy has allowed the servicing of hundreds of thousands of daily

active users, consistently guaranteeing a maximum latency - from

the time the data is �rst made available from the device, to the time

when it reported back to the user (e.g., in a dashboard) - of less than

an hour.

2.4 Parsing and Normalization

Once the data has been retrieved from the data producer’s servers

it needs to be parsed and normalized. While parsing ad-hoc binary

representations of the data can only be done through proprietary

libraries, in most cases data is encoded using some form of XML or

JSON, which can be e�ciently decoded using standard libraries.

The lack of a standardized data schema in the industry means

that every app and device manufacturer uses a proprietary nested

structure to represent their data. This makes normalization to a

common data schema a challenging task. The schema we have

chosen is event-based, where each event corresponds to a data

point made available by the data producer. While discussing the

common data schema adopted is beyond of the scope of this work,

it is important to consider how it can help enforce event uniqueness.

Event duplication can occur when a data provider decides to re-

publish an event that had been already transmitted in the past

without modi�cation. De-duplication must also be enforced across

di�erent devices measuring the same quantity for the same user.

Typical examples are runners who wear wristbands (thus recording

steps count) but also report single training sessions through runner-

speci�c apps, resulting in double counting of steps.

Quantity normalization is also essential. Data producers may

return quantities in di�erent units of measurement, which may

vary depending on the user’s settings and current location. The

same applies to timestamps, which may be communicated with or

without timezone quali�ers. Some data providers always return

the timestamp in user local time and provide the timezone in the

user pro�le (causing issues if the pro�le is not fetched at reasonable

intervals), others return UTC timestamps and actual timezones, and

a few just UTC timestamps. Timezones are often returned follow-

ing ISO-8601 standards (e.g., -HH:MM) but it is not uncommon to

see abbreviations (e.g., EST) or deltas expressed as minutes, sec-

onds or even milliseconds of di�erence with respect to UTC (e.g.,

-21600000). Handling all possible formats, variations and exceptions
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requires a great deal of ad-hoc code, especially when dealing with

databases (e.g., Postgres) which do not maintain timezone infor-

mation associated with timestamps. In our experience, storing the

timestamp in user local time (forced to UTC in the database) and

the timezone in a separated �eld is advantageous both during data

storage/retrieval and analysis.

2.5 Datastore and Processing

Similar to other large-scale event-stream use cases, we use a lambda

architecture [31] to detect anomalies in real time and allow for

more elaborate analyses. The real-time component of the lambda

architecture is based on Elasticsearch, a distributed search engine

that uses a schema-free format and allows e�cient queries on raw

mHealth data. Data is also converted to a wide-column relational

format and stored in compressed columnar format on HDFS, where

it is made available to for analysis via the Apache Spark computing

engine, or queried in SQL via Presto.

3 ANALYSIS

3.1 Goal of the Analysis

In this section, we assess the utility of the data collection described

in Section 2 by evaluating the prediction performance on classi-

�cation tasks drawn from commonly used health questionnaires

that capture lifestyle and environmental traits. An illustrative ex-

ample for the speci�c case of cardiovascular disease is the Harvard

Healthy Heart Score survey [20], which calculates a Cardiovascu-

lar Lifestyle Risk Score (CLRS) based on lifestyle habits such as

smoking, physical activity, and diet. It is not surprising that, de-

spite inaccuracies [6], tracker data can help shed light on outcomes

determined by behavior. In the case of the Harvard CLRS question-

naire, an example question such as “During the past year, what was

your average time per week spent on walking (slower than 3 miles

per hour)?” can be answered immediately using the step count

reported by a pedometer. On the other hand, for other questions

of the questionnaire that cannot be directly inferred from tracker

summary statistics, e.g., weekly alcohol consumption, it is less obvi-

ous whether and to what extent mHealth tracker data can be used

to infer an answer. In this analysis we study the performances of

models in inferring the answer to such questions as a proxy to the

broader utility of the collected data.

3.2 Data Sets

The data sets considered for this analysis take advantage of the

heterogeneity of the population and the types of data collected,

zeroing in on a variety of di�erent cohorts with di�erent behaviors

and kinds of data tracked. Each data set consists of a cohort of

users for which the label associated with the speci�c prediction

task (i.e., the target variable) was available. All data included in

the datasets was shared by users of a commercial reward-based

wellness platform powered by the the described data collection

architecture in 2015 and 2016. Across all tasks, the only predictor

used for each individual consisted of the individual’s time series of

historical daily step counts, sleep duration, and interactions with

a connected scale (a binary indicator whose value is 1 if the user

weighed themselves through a connected scale, and 0 otherwise).

The value of the recorded weight was not used. We considered a

history of 147 days across all individuals and prediction tasks. The

data sets utilized in the analysis, each of which associated with a

di�erent prediction task, are described below.

Uptake. This data set consists of 1,996 users who took part in

an IRB-approved study designed to increase the level of physical

activity through small monetary incentives. Over a two-week inter-

vention period, the groups were o�ered the same average incentives

for physical activity. We considered a subset of the users in the

experimental arms (the control group did not undergo the interven-

tion) that have a history of measurements of at least 147 days. We

assigned a positive label to users whose future median daily step

count during the intervention period showed an uptake of more

than 2,000 steps/day
1

compared to the median pre-intervention.

This resulted in 22% positive labels.

BMI. This data set consists of the 1,978 users who have shared

their BMI measurements (weight reported by a connected scale,

height self-reported). We assigned a positive label to users with

future BMI (as reported in the �rst half of 2016, six months after

the end of the 147-day time series used as predictor) higher than

a chosen clinically relevant threshold [45], which resulted in 44%

positive labels.

Alcohol. This data set consists of 815 users that agreed to

participate in a one-click survey answering the lifestyle question

“On average, do you have more than one drink per week?” inspired

by the Healthy Heart Survey [20]. We assigned a positive label to

users who answered the question positively, which resulted in 33%

positive labels.

Friends. This data set consists of all 16,862 users of the rewards

platform who reported at least one walk, sleep, or weighing event

in the �rst half of 2015. We assigned a positive label to any user

who had at least one friend on a social network associated with the

tracking device they used in the second half of 2015, resulting in

80% positive labels.

FoodLogger. This data set consists of all 16,862 users of the

rewards platform who reported at least one walk, sleep, or weighing

event in the �rst half of 2015. We gave a positive label to any user

who logged at least one meal in the second half of 2015, resulting

in 55% positive labels.

ScaleUsage. This data set consists of all 16,862 users of the

rewards platform who reported at least one walk, sleep, or weighing

event in the �rst half of 2015. We gave a positive label to any user

who weighed themselves in the second half of 2015, resulting in

71% positive labels.

4 METHODS

The clinical research community has historically utilized modeling

techniques with a few hand-picked predictor variables, with the

goal of obtaining models that are easier to interpret. Recent develop-

ments in the health informatics community have seen widespread

adoption of modern machine learning methods, including neural

networks, due to their high performance on complex inputs such

as the multivariate time series considered here [29].

We pose our predictive modeling problems as sequence classi-
�cation tasks. Given multivariate time series X = [x1, . . . ,xT ] of

1
This level of increase in activity, if sustained in the long run, can yield signi�cant

health bene�ts [34]
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tracked behavioral data for T days for a user, we estimate the con-

ditional probability p(y | X ) of the target y (e.g., whether user’s

future BMI is above a certain threshold). In all data sets consid-

ered, xt ∈ R5 includes two real-valued variables (daily tracked

step counts and hours slept) and three binary utilization variables,

indicating whether the user logged her weight, steps, and sleep that

day.

We apply two di�erent neural network architectures to clas-

sifying behavioral sequences: temporal convolutional neural net-

works (CNNs) and recurrent neural networks (RNNs). Both CNNs

and RNNs are able to capture correlations across di�erent vari-

ables and over time. While RNNs can in principle be applied to

sequences of di�erent lengths, we do not make use of this property

here. All neural nets in this paper use sigmoid outputs, so that

p(y | X ) = 1/(1 + e−w>a ) where a = f (X ) is a transformation of

user’s time series performed by the rest of the neural net. The �nal

output layer can be viewed as a logistic regression and the rest

of the model as a feature extractor learned from data, rather than

designed by hand. All neural nets are trained using gradient descent

with back-propagation to minimize the negative log likelihood of

the true label y: loss(y, ŷ) = − (y log ŷ + (1 − y) log(1 − ŷ)) where

ŷ = p(y | X ). All neural nets were implemented and trained using

the open source Keras package [9].

4.1 CNN Architecture

The temporal convolution neural net architecture considered is

shown in Figure 4. Each individual sequenceX
(k )
u = [x (k )

1
, . . . ,x

(k )
T ]u

(e.g., step counts) is fed separately to a two-stage univariate feature

extractor, where each stage consists of a 1D temporal convolu-

tion followed by a non-linear activation function and a pooling

operation. In contrast to Zheng et al. [46], we use a hyperbolic

tangent non-linearity (tanh) and max-pooling (vs. a sigmoid and

average pooling) and dropout of probability 0.5 before each pooling

layer. These changes signi�cantly improved the performance of the

networks during cross validation.

The output of the feature extraction layers is �attened and fed to

a standard fully connected multilayer perceptron (MLP) with one

hidden layer [28]. The hidden layer uses a recti�ed linear activation

function and dropout of probability 0.5 before the �nal sigmoid

output.

4.2 RNN Architecture

The recurrent neural network (RNN) we consider is a simpli�ed

variant of the long short-term memory (LSTM) network [22], with

gated recurrent unit (GRU) hidden layers [8]. In the GRU RNN,

the persistent hidden state s(`)t in layer ` at time step t is a linear

interpolation of the previous state s(`)t−1 and a transient activation

h(`)t , where the interpolation weight is also a learned function of

the inputs and previous state. The GRU is fully speci�ed by the

following feed-forward equations:

z(`)t = σ (U (`)z s(`−1)t +W
(`)
z s(`)t−1 + bz )

r (`)t = σ (U (`)r s(`−1)t +W
(`)
r s(`)t−1 + br )

h(`)t = ϕ(U (`)h s(`−1)t +W
(`)
h (r � s

(`)
t−1) + bh )

s(`)t = (1 − z) � s(`)t−1 + z � h
(`)
t

where � is the element-wise product of two vectors and σ and ϕ are

element-wise sigmoid and tanh functions, respectively. For layer

` = 1, the input is the observation, i.e., s(0)t = xt . z(`)t is the update
gate that controls the interpolation between previous state and

transient activation, while the reset gate r (`)t controls the in�uence

of the previous state on h(`)t .

Predictions ŷt are generated at each time step by feeding the top-

most hidden layer s(`)t into a fully connected sigmoid output. During

training, we apply the target replication strategy proposed by Lipton

et al. [29], which has been shown to improve the performance of

RNNs in classifying long time series of the type analyzed here. The

training loss for a single example is a weighted average of the loss

for the prediction at each time step ŷt . We use a simpli�ed version

of the target replication loss that corresponds to setting α = 1:

loss

(
y, {ŷt }Tt=1

)
=

1

T

T∑
t=1

loss(y, ŷt )

4.3 Multi-task Training with Fragmented Data

Sets

Multi-task training can improve performance on individual tasks,

especially in the absence of large labeled data sets and when the

tasks are related [5, 29]. It is straightforward to train a single neu-

ral net to solve C di�erent predictive tasks simultaneously: we

add a separate output (with its own output weights wc ) for each

task c . The training loss for a single example with label vector

y = [y1, . . . ,yC ] is the average over the individual task losses

loss(y, ŷ) = (1/C)∑ loss(yc , ŷc ).
In typical multi-task training, we have a single data set of N

training examples with a full observed y for each example. Our

setting di�ers in that our data is fragmented: we have C distinct

data sets, one each for task, with the same set of features but only

one task label y available per data set. We can still use such data to

train a neural net in multi-task fashion by treating the unobserved

labels as missing. We augment our data with a second set of “labels”

δ , where δc = 1 only if yc is observed and δc = 0 otherwise.

The modi�ed per-task training loss then becomes loss(y, ŷ,δ) =
(1/C)∑δc loss(yc , ŷc ). In other words, if yc is unobserved, then

task c does not contribute to the loss for that example.

In the above objective function, larger data sets will contribute

more heavily to the overall loss, biasing the learning toward those

tasks, which may be undesirable. To combat this, we multiply each

task-speci�c loss by a weight inversely proportional to the size of

its respective training set. Speci�cally, for C task-speci�c data sets

with Nc training examples each, we use the following modi�ed loss

function, where N =
∑
c Nc is the total number of users included
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Figure 4: The temporal CNN architecture, for a single classi�cation task. For each user, each time series is fed through the

convolutional layer separately. The output layer, the only one label-speci�c, is a Log SoftMax classi�er.

in the dataset, counted with their label multiplicity:

loss(y, ŷ) = 1

C

∑
c
δc

N

Nc
loss(yc , ŷc )

4.4 Baseline Classi�ers

To quantify the e�ectiveness of the neural net models, we devel-

oped a set of baseline classi�ers using traditional machine learning

approaches. To verify that the extra complexity of the RNN and

CNN models is justi�ed, we devised a simple L2-regularized logistic

regression model that uses the same multi-dimensional 147 day

history of step counts, sleep duration values, and scale interactions

as its input. We chose logistic regression as a baseline because it can

be thought of as a neural network with zero hidden layers. The L2

regularizer (‖w ‖2
2
, the squared magnitude of the regression weight

vector) penalizes large weights and reduces over�tting, making

L2-regularized logistic regression more robust to large numbers of

features and fewer training examples.

We further included a Random Forest (RF) and an L2 logistic

regression classi�er that use hand-engineered features in the base-

line classi�er set. This allows us to compare the neural net models

that are based on raw data and and learn their own feature repre-

sentations to traditional classi�ers that are given hand-engineered

features and can skip the feature-representation-learning step. We

chose the hand-engineered logistic regression classi�er to explore

the e�ect on performance of switching from raw features to hand-

engineered features while holding the classi�er constant. The RF

classi�er provides an example of a powerful, ensemble-based ma-

chine learning algorithm. Hyperparameters for the classi�ers were

chosen using cross-validation and random search. 27 hand-generated

features were used, 9 for each of the three time series. The features

included statistical features that capture central tendencies, vari-

ability, and trends in the time series: mean, standard deviation,

quantiles, and slope, among others.

5 EXPERIMENTAL RESULTS

We performed a series of binary classi�cation experiments using

the data sets and labels described in Section 3.2, which all consist of

147 days of 5 time series: step counts and utilization, sleep duration

and utilization, and scale utilization. Our goal is to predict binary

labels representing user traits related to wellness (ScaleUsage,

FoodLogger), lifestyle (BMI, Alcohol) and behavior (Uptake,

Friends). Since the preparation of this manuscript we have further

expanded our investigation on other data sets collected through

the same infrastructure described in Section 2 to predict additional

clinically relevant traits [35, 36, 42].

Our �nal CNN architecture includes two convolutional layers

of 8 and 4 �lters with kernels of width 7 and 5, respectively. Both

�lters use step size of length 2 and are followed by a max pooling

with width 2 and step size 2. The �nal fully connected hidden

layer has 300 nodes, fed into C sigmoid outputs one per task. (In

Figure 4, a single-task version of the architecture with 2 output

nodes is shown.) Our �nal RNN architecture uses two layers of

32 GRUs each. We use dropout with probability 0.25 after each

layer, L2 weight decay of 1e-6 on all weights, and target replication.

Both architectures were chosen based on validation performance

and trained using the Adam variant of SGD with parameters of

α = 0.005, β1 = 0.9, and β2 = 0.999 [24].

We measured classi�er performance using area under the re-

ceiver operating characteristic (ROC) curve, averaged across four

folds. AUC, which is optimized by ranking positive examples ahead

of negative examples, is an appropriate metric of success for the

intended application of targeting interventions. For example, the

predicted propensity of individuals to increase their physical ac-

tivity as a result of a digital intervention (Uptake data set) can

be used to improve triaging of interventions. More sophisticated,

higher-cost interventions like in-person coaching can be targeted

to individuals identi�ed as less inclined to improve, while simpler
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Table 1: AUC scores for the raw data and feature-based classi�ers ± the standard error of the mean across cross-validation

folds.

RNN Raw CNN Raw Random Forest Features Logistic L2 Raw Logistic L2 Features

Overall 0.698 ± 0.005 0.695 ± 0.002 0.693 ± 0.003 0.669 ± 0.004 0.677 ± 0.002
Alcohol 0.526 ± 0.016 0.532 ± 0.014 0.569 ± 0.019 0.521 ± 0.028 0.572 ± 0.017
BMI 0.615 ± 0.014 0.642 ± 0.005 0.659 ± 0.016 0.637 ± 0.009 0.660 ± 0.017
Uptake 0.699 ± 0.008 0.689 ± 0.006 0.610 ± 0.014 0.686 ± 0.007 0.588 ± 0.012
Friend 0.739 ± 0.004 0.715 ± 0.005 0.738 ± 0.006 0.673 ± 0.007 0.695 ± 0.006
Food 0.757 ± 0.004 0.746 ± 0.004 0.744 ± 0.005 0.668 ± 0.004 0.717 ± 0.002
Weight 0.851 ± 0.003 0.848 ± 0.002 0.839 ± 0.003 0.826 ± 0.002 0.833 ± 0.002

Figure 5: Plot of single-taskAUCachievedwith eachmethod

on each data set and overall (average of per-dataset AUCs,

eachweighted by the size of the data set). Error bars the stan-

dard error of the mean across cross validation folds.

and more cost-e�ective strategies, such as email reminder, are be

su�cient for those with a higher propensity to change.

5.1 Classi�cation Results

The per-task classi�cation performance is summarized in Figure 5.

The RNN model performs best overall, followed very closely by

the CNN, with respective average AUCs of 0.698 ± 0.005 and 0.695

± 0.002. Both are comparable to the RF with an AUC of 0.693 ±
0.003 and they outperform the logistic baselines by a large margin.

The neural net models demonstrate comparable ability to model

the temporal dependencies in these reasonably long behavioral

biomarker time series and to predict health-related outcomes and

traits. Their respective AUCs are within the margin of error for most

tasks, except Friends. This leaves open the question of whether

CNNs or RNNs are better suited to modeling these types of time

series.

Perhaps more interesting are the tasks where the neural nets

are outperformed by other models. On BMI, the features-based

classi�ers outperform the raw-data classi�ers, indicating that not

having to learn the hand-engineered features is an advantage for

this data set. On Uptake, simple logistic regression using the raw

time series as inputs is far superior to models using hand-engineered

Figure 6: Sumof the absolute values of the �rst layerweights

in theCNNmodel for each of the 5 input streams across each

task.

features and competitive with the neural nets. It is not surprising

that daily step count is highly predictive of Uptake, which is itself

de�ned as a function of future activity and steps. It seems likely

that the neural nets are also able to discover this relationship and

that little additional signal remains.

In Figure 6 we plot the sum of the absolute values of the �rst

layer weights for each of the 5 input streams and for each of the

tasks. The scale utilization signal appears to have high power in

the ScaleUsage and FoodLogger, and, somewhat surprisingly

Friends tasks, in line with previous research [4] showing that self-

weighing patterns are predictive of a variety of behavioral traits.

5.2 Multi-task Training Results

We observed that the CNN underperforms most markedly on the

Alcohol task and hypothesize that this is in part because it is too

small to successfully train the CNN. Multi-task training is ideally

suited to alleviate this issue. We start by augmenting the Alcohol

data set with the Uptake data set and then using the described

multi-task strategy for training the model, we achieved a signi�-

cant improvement, from 0.532 AUC ± 0.013 to 0.584 AUC ± 0.013.

We further explored the e�ect of augmenting the other tasks with

the Uptake data set, and achieved the results shown in Table 2.

We observed that as the size of the task increases, the bene�t of
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Table 2: The di�erence in AUC between multi-task and

single-task model for each task other than Uptake. The

multi-task model was trained on the combination of the

primary data set and the Uptake data set. Di�erences are

shown ± the standard error of the mean di�erence across

cross-validation folds.

Data Size Primary Task AUC Improvement

815 0.052 ± 0.019
1978 −0.007 ± 0.008
16862 −0.029 ± 0.007

multi-task training diminishes. Interestingly, we observed that ap-

plying multi-task training to all the C tasks at the same does not

signi�cantly increase the model performance.

6 RELATEDWORK

Due to the novelty of mHealth, we are not aware of any research

describing the implementation and deployment of a large-scale

production mHealth data collection infrastructure. Proof of concept

studies have been proposed [13], especially in the IoT literature

(see Islam et al. [23]) which mostly focused on medical data trans-

mission and interoperability, rather than the applications needed to

enable a research platform. For a survey considering applications

in pervasive health see Triantafyllidis et al. [43], which lists several

research platforms, each rarely exceeding hundreds of users.

From an analysis perspective, few studies consider large cohorts

of mHealth data collected in free-living conditions [1, 33], and most

of the previous work has focused on small-sample and condition-

speci�c trials. For a comprehensive review on such research, with

an emphasis on mobile sensor capabilities, see Pejovic and Musolesi

[32].

From a methods standpoint, modeling of temporal health data

has been utilized by researchers in the medical machine learn-

ing community for tasks ranging from early detection and predic-

tion [21, 41] to clustering and subtyping [30, 40]. The success of

deep learning in other �elds has generated an explosion of interest

in using neural networks to model temporal health data [7, 27, 38].

As noted by Lane and Georgiev [26], while mobile sensor data

shares many properties with data from domains in which deep

learning has been applied successfully (e.g., speech), deep models

have not been thoroughly investigated for wearable data. To our

knowledge, our study is the �rst attempt at validating and compar-

ing deep neural networks (CNNs and RNNs) as tools for analyzing

mHealth data at scale.

7 CONCLUSION

In this work we describe a platform for continuous collection of

mHealth data from a very large cohort, used in production settings

at Evidation Health. We provide evidence that the data collected

from commercial mobile health devices can be e�ectively used

to discover meaningful behavioral phenotypes. Just as in medicine

where phenotypes are classically de�ned as observable health con-

ditions, behavioral phenotypes are being de�ned as pre-clinical

and clinical states that can have a substantial impact on health. In-

sights such as being at risk for weight gain, propensity to engage in

health-promoting behaviors, or likely advances in disease severity,

are valuable in e�orts to improve health outcomes at scale.

While prediction performance varied signi�cantly across the

analyses considered, our results show that machine learning in gen-

eral, and deep learning in particular, can identify relevant traits in

mHealth data collected in free-living conditions. Our results are es-

pecially remarkable given the limitations of the data, in both scope

(no physiology, e.g., heart rate) and detail (reported hours of sleep vs.

�ne-grained sleep data). Such limitations are quickly being removed

by the advent of new consumer-grade sensors able to continuously

capture physiologic quantities such as hemoglobin concentration,

arterial oxygen saturation (SpO2), pulse rate (PR), perfusion in-

dex (PI), and Plethysmograph Variability Index (PVI) [10]. In fact,

since the preparation of this manuscript we have shown that simi-

lar methods to those presented can be used to derive phenotypes

related to clinical manifestations such as self-reported chronic con-

ditions [35, 42], and that the quality of the phenotyping improves

with increased temporal resolution and duration of the collected

data [36].

The presented infrastructure can easily be extended to ingest

new data sources, and the models described are able to accept new

quantities measured over time as additional input channels, without

requiring any change in architecture or feature engineering. The

success of deep learning has been driven in large part by massive

data sets. Given the growth trend of mHealth [14], we anticipate

even better predictive performance as data sets from larger cohorts

- for instance the recent mHealth cohort study initiatives [12, 17, 44]

- and richer inputs become available over time.

We believe that our work provides a direct validation of the

feasibility of such large cohort studies, enabling Bring Your Own

Device (BYOD) models [11] that can signi�cantly speed up recruit-

ing and facilitate the large-scale collection of Patient Generated

Health Data (PGHD) in free-living conditions. In the longer term,

it is expected that the phenotypes learned through such research

initiatives may allow a better understanding of the transition from

health to disease [44] and ultimately help predict disease and health

outcomes [17].
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