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ABSTRACT
The ubiquity and remarkable technological progress of wearable
consumer devices and mobile-computing platforms (smart phone,
smart watch, tablet), along with the multitude of sensor modali-
ties available, have enabled continuous monitoring of patients and
their daily activities. Such rich, longitudinal information can be
mined for physiological and behavioral signatures of cognitive im-
pairment and provide new avenues for detecting MCI in a timely
and cost-effective manner. In this work, we present a platform
for remote and unobtrusive monitoring of symptoms related to
cognitive impairment using several consumer-grade smart devices.
We demonstrate how the platform has been used to collect a total
of 16TB of data during the Lilly Exploratory Digital Assessment
Study, a 12-week feasibility study which monitored 31 people with
cognitive impairment and 82 without cognitive impairment in free
living conditions. We describe how careful data unification, time-
alignment, and imputation techniques can handle missing data
rates inherent in real-world settings and ultimately show utility of
these disparate data in differentiating symptomatics from healthy
controls based on features computed purely from device data.
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1 INTRODUCTION
An estimated 5.7 million Americans and 46.8 million people world-
wide live with dementia with a global cost of approximately $1 tril-
lion [32]. Despite this prevalence, early diagnosis is a clinical chal-
lenge and is time consuming. Early symptoms are subtle, insidious,
and easily dismissed as "normal aging" [5].

Common clinical screening tools for cognitive impairment, such
as the Mini Mental State Examination [12] or the Montreal Cogni-
tive Assessment [31], do not consistently detect the earliest stages
of cognitive impairment [19]. More sensitive testing is limited by
the need for highly specialized raters, lengthy duration of testing,
rater bias, cultural and educational bias, and practice effects [17, 20].
Efforts to reduce these limitations have focused on computerization
of assessments, such as the CogState CBB [29], however computer-
ized tests are still limited (e.g. in their ability to discriminate the
earliest forms of cognitive impairment) [3].

Other efforts have focused on porting the testing of specific
cognitive domains from the clinical setting to apps through gam-
ification [1, 24]. While leveraging ubiquitous computing devices
may solve the issues of access to testing, such tests may introduce
new limitations in the form of practice effects, limiting their clinical
utility. Purely passive measurements would avoid practice effects,
though often these measurements require complex installation of
sensors within the home, limiting the scalability [22].

The near-continuous passive data collection of sensors in mobile
devices and other consumer technologies can overcome these limi-
tations and may have the potential to transform our ability to detect
and track cognitive decline with minimal intrusion and burden [11].
Recognizing the potential utility for Real-World Evidence (RWE)
for drug development, the US Food and Drug Administration (FDA)
launched a framework to advance the use of RWE collection [14],
including MyStudies App, a digital tool to help capture real world
data from patients [13]. Informed by our experience with frequently
measured app-derived data [34], a pragmatic approach is required
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Figure 1: End-to-end data flow. Adapted from "Clinical Trials Transformation Initiative (CTTI) Recommendations: Advancing
the Use of Mobile Technologies for Data Capture & Improved Clinical Trials" [9]. Released July 2018.

to temporally align data sampled at different rates and impute miss-
ing data. Particularly in the case of cognitive decline, missing data
may, in itself, be a signal that should be captured.

Contributions. This study aimed to assess the feasibility of collect-
ing data in individuals with and without cognitive impairment from
multiple smart devices and test whether these data can differentiate
between them. Our contributions are summarized as follows:

(1) We present a unified platform for remote and unobtrusive
monitoring of potential symptoms related to cognitive im-
pairment. This secure and compliant platform (Section 3.1)
collects and harmonizes multi-modal high frequency data
streams from multiple sensors on multiple consumer devices.
Through the platform, we collected over 1.5 GB of data per
participant per day on average, for a total of 16 TB of data
during the course of this real-world study.

(2) We describe methods for effectively processing the data into
meaningful features, including handling missing data and
aligning data collected at different sampling rates.

(3) We demonstrate the utility of these processed features in dis-
tinguishing participants with symptoms of cognitive impair-
ment (symptomatics) from healthy controls. We also explore
which individual features make the strongest contributions
to model outputs, to drive hypothesis generation for further
investigations.

2 STUDY DESIGN
The Lilly ExploratoryDigital Assessment Studywas an IRB-approved
multi-site 12-week exploratory study conducted by EvidationHealth,
Inc. on behalf of Eli Lilly and Company and Apple Inc.. The study
aimed to assess the feasibility of using smart devices to differen-
tiate individuals with mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD) dementia from healthy controls. MCI is
the clinically symptomatic, pre-dementia stage of AD in which
cognitive deficits do not yet impair the ability to function at work
or in usual daily activities.

Consented 
(n=138)

• Chose not to continue forward with 
eligibility assessment (n=1) 

• Excluded (n=18): 
a) CogState Brief Battery Score out 

of range (n=14) 
b) NIA-AA criteria not met (n=1) 
c) Medical history or clinical trial 

participation (n=3)
Enrolled 
(n=119)

Healthy Control (n=84) Mild AD Dementia (n=7)

Withdrew (n=2)

Analyzed (n=82)

MCI (n=28)

Analyzed (n=24) Analyzed (n=7)

Screened for 
eligibility 
(n=201)

Excluded or chose not to continue 
forward with site visit (n=63)

Withdrew (n=4)

Figure 2: Flowchart of participants’ enrollment.

2.1 Participant Screening and Enrollment
From December 2017 through August 2018, 201 potential partici-
pants initiated screening procedures and 138 of those individuals
were consented and fully screened at 12 centers across the United
States. 119 participants enrolled in the study. Key inclusion criteria
were: (1) being 60-75 years old, (2) speaking English as their primary
language, and (3) being familiar with digital devices, including cur-
rently having and actively using an iPhone and having an at-home
WiFi network.

Participants with MCI and mild AD dementia had to meet the
NIA-AA core clinical criteria for their respective ADdisease states[21].
For symptomatic participants, a study partner was consented to
monitor the compliance with study procedures.

Upon enrollment, each participant was provided an iPhone 7
plus (to be used as their primary phone), an Apple Watch Series 2, a
10.5" iPad pro with a smart keyboard, and a Beddit sleep monitoring
device along with apps to collect all sensor and app-usage events
during the 12 week study period.
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Table 1: Sources of data collected in this study, along with their sampling rates and estimated sizes. Data size estimates are
reported in MB collected per participant per day. *Data sources are outside the scope of this paper.

Domain Hypotheses for Symptomatic cohort Device Datastream Sampling frequency Est. Size (MB)

Gross Motor Function Poorer motor coordination, slower and more 
variable gait.

Watch Accelerometer 
Gyroscope * 
Pedometer  
Stairs climbed 
Stand hours 
Workout sessions

100 Hz, while worn 
100 Hz, while worn 
2-5 seconds 
Event-triggered 
Hourly 
Event-triggered

> 200 
> 200 
~ 0.1 
< 0.1 
< 0.1 
< 0.1

Phone Accelerometer 
Gyroscope * 
Pedometer

100 Hz, continuous 
100 Hz, continuous 
2-5 seconds

> 400 
> 400 
~ 0.2

Autonomic Impaired parasympathetic system activity. Watch Heart-rate Seconds, dynamic ~ 0.2

Circadian Rhythm Disruption in sleep cycle and daily routines. Beddit Sleep sensors 
Sleep summaries

Multiple 
Daily

~ 0.4 
< 0.1

Phone Energy survey Daily < 0.1

Behavioral, Social, and 
Cognitive

Increased withdrawal from social engagements, 
electronics usage, hobbies, etc. Over-reliance on 
helper apps due to difficulty with cognitive 
control and attention.

Watch App usage  
Phone unlocks 
Message meta-data 
Phone call meta-data 
Breathe sessions

Event-triggered 
Event-triggered 
Event-triggered 
Event-triggered 
Event-triggered

< 0.1 
< 0.1 
< 0.1 
< 0.1 
< 0.1

Phone Distance 
Mood survey

Event-triggered 
Daily

< 0.1 
< 0.1

Fine Motor Control Slower and more variable typing and tracing. Assessment App Tapping task 
Dragging task

Bi-weekly 
Bi-weekly

— 
—

Language Impairments in language content and quality 
(pauses, grammatical errors, etc.). 

Assessment App Typed Narrative task 
Verbal Narrative task 
Video * 
Audio *

Bi-weekly 
Bi-weekly 
Bi-weekly 
Bi-weekly

— 
— 
— 
—

NOTE: Calculation for data streaming: 12TB sensor data -> divide by 115 * (7*12) —> 1.25 GB per day —> round down to 1.2 
To be conservative —> 0.8 phone / 0.4 watch —> split into accelerometer and gyro (400, 400, 200, 200)

In all, 84 healthy controls and 35 symptomatic participants were
enrolled (Figure 2). Participants were asked not to change any
therapies for dementia or other medications that could affect the
central nervous system over the course of the study, though this
was not a requirement for participation.

2.2 Study Procedures
Over the course of the 12 weeks of data collection, participants
were instructed to use their iPhone and Apple Watch as normal,
and to keep them charged. Data from sensors in these devices and
device usage, including phone lock/unlock, calls, messages, and
app history, were passively collected by a bespoke study app and
transmitted nightly to the study servers (Table 1). Central review
of incoming data allowed for outreach when no data were received
from devices. Participants with gaps in device data were contacted
via email or phone to remind them to use their devices and to
troubleshoot any problems.

Participants were also asked to answer two one-question surveys
daily (one about mood, one about energy) as well as perform simple
activities every two weeks on the Digital Assessment App. The app
consisted of several low-burden active language and psychomotor
tasks, including a dragging task in which participants dragged one
shape onto another, a tapping task in which participants tapped a
circle as fast as possible and then as regularly as possible, a read-
ing task in which participants read easy or difficult passages, and
a typed narrative task in which participants typed a description

of a picture. These activities were selected because they have the
potential to be monitored passively in the future. Study procedures
included recording and transmitting video and audio of the par-
ticipants while completing tasks on the Digital Assessment App.
Though the analysis of audio/video data is outside the scope of this
paper, we describe challenges on reliable collection of high-quality
video for clinical purposes in the next section. At the conclusion of
the 12 weeks of data collection, the devices were returned to the
study center.

3 DATA PROCESSING
The collection and processing of high volume sensitive health-
related data mandates high security standards and requires follow-
ing strict protocols to comply with regulatory requirements and
protect the privacy of the individuals involved. The complexity
of this task increases with the number of sources, formats, and
different sampling rates at which the data is collected (Table 1).

In this study, we used the Study Platform, developed by Evidation
Health, Inc., to aggregate and analyze the data collected from the
iPhone, Watch, and Beddit devices, as well as from the active tests
performed on the iPad over the 12-week study period.

3.1 Study Platform
The Study Platform is a high-security environment designed to
manage clinical studies, ingest and process device data, and provide
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Figure 3: Preprocessing of Raw Data using Time Alignment and Data Imputation. Raw data sources (on the left) are imputed,
time aligned, and combined into data channels of a behaviorgram.

a secure platform for analysis (Figure 1). The study platform stores
participants’ consents and data generated from eligibility screening
to study completion, while monitoring compliance.

All data collected, including from sensors and smart phones,
surveys, active tasks, and audio/video, were encrypted in transit and
then stored on the platform data lake. Evidation’s Study Platform
uses a chain of custody for data that is compliant with the Health
Insurance Portability and Accountability Act (HIPAA) and the FDA
Code of Federal Regulations (CFR) Title 21 Part 11.

In total, the types of data collected from the daily use of these
devices pose a potential concern to privacy for the participants. In
addition to explicit consent to this risk during the enrollment, the
data collected from each device was limited to reduce the risks of
sensitive information being transmitted. For example, information
about messages, calls, and social media usage was restricted to a
binary indication of whether the application was in use. No private
messages, voice calls, or other data packets were collected passively.
There was an active recording of an interview that was used to
monitor language with the express consent of the participant.

Data ingested by the platformwas time-stamped (for compliance,
by a third-party), checked for consistency, normalized to a standard
schema (to facilitate data analysis) and saved using an optimized
format in a distributed and replicated data store.

Researchers acessed the analytics portion of the data platform
through a secure Virtual Private Network (VPN). Due to the large
volume of data, the Study Platform used a distributed data process-
ing system based on Apache Spark [37]. Data could not be accessed
directly except by an internal interface that allowed researchers to
request an encrypted, check-pointed slice of data. Depending on
their role and permissions, each researcher was allowed to see sub-
sets of the sources and data types available. The decryption key and
the location of the data were only communicated to researchers.

3.2 Data Preparation
The collection of data frommultiple sources posed several engineer-
ing and analytical challenges. Some input sources were sampled
at a constant frequency (e.g. sleep quality data), while others were
sampled only when relevant events happened (e.g. the time when
a specific app was opened) or the sample frequency adapted to

the context (e.g. sampling rates of pedometer and heart-rate mea-
surements increased during high-activity and workout periods).
Among the evenly-sampled data sources, sampling time ranged
from day (e.g. surveys) to minute (e.g. aggregate physical activity)
to sub-second (e.g. raw accelerometer sampled at 100Hz) intervals.

Behaviorgrams. As a first step to the analysis, we proceeded to map
all event streams and time-series data sources (raw) into a common
representation that we call a behaviorgram (Figure 3). A behav-
iorgram is comprised of time-aligned data channels (processed)
with values at a 1-minute resolution. The behaviorgram succinctly
represents the behavior of a participant in the study over time. In
our case, the behaviorgram of a participant consisted of 65 data
channels and 100,800 timepoints, corresponding to each minute in
the 10 week period following enrollment 1.

Transforming the input source into the behaviorgram represen-
tation required time-alignment between channels, resampling of
sources at different time scales, channel-aware aggregations, and
careful handling of missing values. First, input sources timestamps
were aligned in a timezone-aware fashion. Values from event-based
sources were assigned to the second in which they occurred and
either summed (for steps, stairs, missed calls, and messages) or aver-
aged (for pace, stride, heart rate, and survey responses) to produce
the minute-level-resolution sampling. Input sources representing
intervals (e.g. for workout sessions, breathe sessions, stand hours,
exercise, phone calls, phone unlocks, and app usage) were converted
into minutes by encoding the fraction of the minute covered by
the interval. We chose a minute-level resolution as the base resolu-
tion for the behaviorgram, following our experience on behavioral
patterns associated with several health conditions manifesting at
that timescale [34]. For domains that required sub-minute (or sub-
second) precision (e.g. fine-motor functions) we first computed
statistics at higher time-resolution before aggregating them to a
minute-level resolution. For example, accelerometer measurements
at 100Hz were aggregated into minute-level values by averaging
the L2 (Euclidean) norm of the X, Y, and Z accelerations taken at
1Only 10 total weeks of data were available during the writing of this manuscript, due
to the week 11 & 12 still undergoing quality control
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Table 2: Summary of aggregations applied to minute-level data during feature computation. Features for the active psychomo-
tor tasks are not reported here. (Abbreviations: TOD, time of day; IQR, inter-quartile range, pctl: percentile)

Feature Type

Channel Type Minute-level Time of day (TOD) Day-level Island

Average Values 
accelerometer, pace, stride, heart rate, sleep cycle, 
distance from home

• 5, 10, 25, 50, 75, 90, 
95th pctl, IQR, Skew, 
Fraction null

TODs of first, middle, last 
occurrences and peak: 
• Median, IQR

Daily 5, 50, 95th pctls, 
Fraction null: 
• 5, 50, 95th pctl, IQR, Skew

—

Counts 
steps, stairs climbed, messages

• Sum TODs of first, middle, last 
occurrences: 
• Median, IQR

Daily sums: 
• 5, 50, 95th pctl, IQR, Skew —

Fractions of a minute 
workout sessions, breathe sessions, standing hours, 
exercise minutes, phone calls, apps, sleep stages

• Sum
—

Daily sums: 
• 50, 95th pctl, IQR, Fraction 

non-zero

• Island durations 
• 5, 50, 95th pctl, IQR 

• Count

Impulses 
missed calls, new apps, new contacts, top 3 contact

• Sum
—

Daily sums: 
• 95th pctl, IQR, Fraction 

non-zero
—

Surveys 
energy survey, mood survey —

TOD of survey: 
• Median, IQR

Daily response: 
• 5, 25, 50, 75, 95th pctl, 

IQR, Fraction null
—

each 100th of a second, after applying a low-pass filter to reduce
the effects of gravity.

The behaviorgram has proven to be a helpful tool to explore
patterns of associations between different channels. First, as a tool
for data quality diagnostics, behaviorgrams allow inspecting miss-
ing data and outliers in one channel within the context of others.
Second, as a data representation format, a behaviorgram makes it
easy to capture interactions between different input data sources
and may provide a means to conceptually replicate dual-task ex-
periments that are administered in the lab or clinic. For example,
previous studies have shown that individuals with dementia show
greater impairment when they attempt to do two tasks at the same
time (e.g. walking and having a conversation) than when they do a
single task (e.g. only walking) [30]. With the behaviorgram repre-
sentation, it’s easy to add a channel that represents "walking while
talking" at the minute level resolution by merging information from
data channels that represent phone calls and average walking pace.

Missing Data. As the data in this study was collected in free living
conditions over an extended period of time, there existed periods
of no data collection due to participants not using or wearing the
devices, being outside the vicinity of a sensor, or not participating
in the active tests. We adopted a conservative approach to handling
missing data. For on-event data streams in which we received data
when an event was triggered (when an appwas opened or amessage
was received, for example), we filled in minutes with no values with
zero, which represented the absence of a triggering event in that
minute. We also linearly interpolated heart rate within gaps shorter
than 15 minutes, since heart rate was sparsely and dynamically
sampled (heart rate was sampled more during high-activity periods,
so aggregate values would be skewed toward higher values without
imputation). We kept all remaining missing data as non-imputed.
The choice to treat missing data as a signal was driven by the
hypothesis that a person may demonstrate gaps in behaviors when

they have cognitive impairment. As a result, we did not want to lose
the potential signal that gaps in data might represent by imputing
across missing values, a type of informative missingness [6].

Feature Computation. The features used in the Analysis (Section 4)
were computed as time-aggregates over the behaviorgram data
channels. We tailored the features we computed to the different
types of data channels in order to create a set of interpretable,
hypothesis-driven variables. We grouped data channels into five
different channel types - average values, counts, intervals, impulses,
and surveys - and computed four general types of features, consist-
ing of aggregates of 1) all minutes, 2) the times of day of different
events, 3) daily aggregates, and 4) the durations of continuous
"islands" of activity (Table 2).

We also computed a set of 98 features from the data gathered
from the psychomotor tasks in the Digital Assessment App. The fea-
tures captured different psychomotor components, such as tapping
speed, tapping regularity, typing speed, sentence complexity, drag
path efficiency, and reading times. In total, we created 996 features,
including 98 psychomotor features. Additional information about
data processing is provided in Section 7 on reproducibility.

4 ANALYSIS
In this section, we demonstrate utility of the collected data in dis-
criminating between individuals with and without cognitive im-
pairment. We cast our problem as a machine learning regression
task and report the performance of our models to differentiate
participants as symptomatics vs. healthy controls.

4.1 Methods
We chose modeling techniques that provide direct interpretability
of the results in feature space. Even if methods based on represen-
tation learning (e.g. deep learning) that directly model outcomes
from the raw time series [26] are becoming increasingly popular in

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2149



hyper-parameter tune
select 

parameters 
with the 
highest 

mean AUC 
and train

1

2

70/30 shuffle split stratified by diagnosis, grouped by user

Bi-week 
AUC

3 score

TRAIN TEST

3-fold cross-validation grouped by user

  Bi-week    Participant  

Participant 
AUC

soft 
vote

Participant 
predictions

score

4

5

Figure 4: Diagram of model structure.

the medical machine learning community, interpretability of find-
ings, model diagnostics, and overall complexity of model developed
remain largely unsolved issues [16].

We trained models with the Extreme Gradient Boosting (XG-
Boost) algorithm, which allowed us to rapidly construct an ensem-
ble of decision trees in a stage-wise fashion [8]. Advantages of
XGBoost are that the boosting algorithm handles missing data and
it can achieve low generalization error even when the number of
features highly exceeds the number of samples. To leverage the ad-
ditional information on severity of symptomatic participants (MCI
vs. mild AD dementia), we trained the model using XGBoost Regres-
sion with a pairwise ranking objective function and the following
labels: healthy control = 0, MCI = 1, and mild AD dementia = 2.

4.2 Data Augmentation
The small number of examples relative to the number of features
poses a challenge in performing any machine learning task. To
overcome this limitation we use a data augmentation technique,
popular for data-inefficient applications such as CNN for image
classification [27]. Our approach consists of computing features on
non-overlapping subsets of 2-week periods for a total of 5 bi-weeks
per participant: BWi,1 . . . BWi, 5 for each user i with each bi-week
BWi, j assigned the same label (healthy control or symptomatic) as-
signed to user i . This technique is sometimes referred to as Window
Slicing in the Time Series Classification literature [24]. The scores
returned by the model on BWi, j are then averaged ("soft-voting")
into a final score for the user i .

We chose a two-week window because it provides a substantial
boost in data size (increasing examples by a factor of 5x), while
at the same time still capturing daily and weekly patterns within
an individual [33]. A two-week window was also a natural choice
for the features computed on the psychomotor tasks, which were
administered every two weeks.

For all tasks we used a 100-repeat holdout procedure to evalu-
ate out-of-sample generalization performance on classifying each
bi-week as belonging to a healthy control or symptomatic partici-
pant. In each of 100 iterations, we split the dataset into train and
test sets using a 70/30 shuffle split that was stratified by diagno-
sis (symptomatic vs. healthy control) and grouped by participant
(bi-weeks from the same participant must all end up in the same
set to prevent the model from memorizing a specific participant’s
pattern). We performed hyper-parameter tuning on the training
set using grouped 3-fold cross validation. We used Hyperopt [4]
to select the following parameters: number of estimators, learning
rate, maximum tree depth, and gamma. For each combination of

parameters, up to 30 combinations, we evaluated the performance
of the model. The model hyperparameters that yielded the highest
average Area Under the ROC Curve (AUROC) across the three folds
were selected to train on the full training set in the outer split. We
computed the bi-week model performance metrics on the held-out
test set in the outer split. Then, in order to make predictions at the
participant-level, we aggregated bi-week scores for a participant via
soft-voting to rank each participant in the test set. The participant
model performance metrics were computed on these scores. Finally,
this procedure was repeated for 100 iterations to estimate average
performance metrics and their associated errors.

A schematic of the modeling steps is illustrated in Figure 4. Addi-
tional details on model selection, parameter tuning, and alternative
models used to reproduce results are discussed in the optional
Reproducibility Section 7.

5 RESULTS
We measure performance using Area Under the Receiver Operat-
ing Characteristic curve (AUROC), averaged across splits. AUROC,
which is optimized by ranking positive examples ahead of negative
examples, is an appropriate metric of success for the intended ap-
plication of targeting interventions. We also report Area Under the
Precision-Recall Curve (AUPRC, computed as average precision
over all possible recall thresholds), which is a more informative
metric in our case where the emphasis is on accurate identification
of the positives with a majority of negative samples [35].

At the participant level and on the full cohort, demographics
alone are very discriminative between conditions, attaining AUROC
of 0.757 (Table 3). The device-derived features alone obtained an AU-
ROC of 0.771. Device-derived features alone were more precise on
average than demographics alone (AUPRC=0.628 vs 0.546) in identi-
fying symptomatic participants. The AUROC of themodel increased
to 0.804 (AUPRC = 0.701) when demographics were added to the
feature set. When comparing AUROC and AUPRC scores between
the demographics-only models and the models that included device-
derived features, all scores were significantly different (p<0.0001),
except for the demographics vs. device-derived features trained on
the full cohort (p=0.2). Reported p-values for testing significance
between differences of mean model scores were computed using
a permutation test. We also repeated the training/test procedure
on a dataset with randomly shuffled labels, and found that AU-
ROC scores of biweek- and user-level models were not significantly
different from a randomly performing model (AUROC 0.5).

Age-Matched Cohort. Participant recruitment in this study was not
age- and gender-matched, but the distributions of age and gender
were monitored throughout enrollment and preferred not to exceed
a 60/40 ratio for gender (in either direction) or an average differ-
ence of 2 years for age. Even so, due to difficulties with recruiting
symptomatic participants, the symptomatic cohort was an average
of 3 years older than the healthy control cohort.

In order to verify that the device-derived features were not de-
tecting differences in behavior due to normal aging, we selected the
nearest age-matched control within the healthy control cohort for
every participant in the symptomatic cohort. Doing so produced
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Table 3: Summary of modeling results.
REGRESSION

Healthy Control vs. Symptomatic Healthy Control vs. Mild AD

Bi-weeks Participants Participants

Cohort Feature Set AUC (±95 CI) AUPrC (±95 CI) AUC (±95 CI) AUPrC (±95 CI) AUC (±95 CI) AUPrC (±95 CI)

Full Demographics (Demo) — — 0.757 (±0.016) 0.546 (±0.020) 0.803 (±0.030) 0.327 (±0.027)

Device features 0.739 (±0.014) 0.556 (±0.020) 0.771 (±0.016) 0.628 (±0.023) 0.933 (±0.016) 0.742 (±0.047)

Device features + Demo 0.782 (±0.014) 0.650 (±0.020) 0.804 (±0.015) 0.701 (±0.021) 0.916 (±0.025) 0.804 (±0.050)

Age-matched Demographics (Demo) — — 0.519 (±0.018) 0.536 (±0.012) 0.608 (±0.031) 0.294 (±0.020)

Device features 0.704 (±0.018) 0.709 (±0.017) 0.726 (±0.021) 0.758 (±0.018) 0.897 (±0.027) 0.816 (±0.043)

Device features + Demo 0.701 (±0.018) 0.705 (±0.018) 0.725 (±0.022) 0.754 (±0.020) 0.887 (±0.028) 0.799 (±0.045)

Table 4: Top 5 feature descriptions and cohort means for Healthy Controls (gray) and Symptomatics (blue).

Data stream Feature Description
Controls 
Mean (±95 CI) 

Symptomatics 
Mean (±95 CI) 

Typing Task Typing speed with no pauses (keystrokes per minute). 115 (±11) 87 (±10)

Pedometer (phone) Median time of day of first active pace from phone. 7:42 am (±0:19) 9:08 am (±0:42)

Energy Survey Fraction of days with no energy survey response. 0.17 (±0.07) 0.33 (±0.08) 

Energy Survey Median time of day of energy survey response. 10:38 am (±0:35) 12:43 pm (±0:52)

Messages Total number of messages received. 179 (±68) 110 (±43)

Data stream Feature Description
Healthy Controls 
Mean (±95 CI) 

Symptomatics  
Mean (±95 CI) 

Assessment App Typing Task Typing speed with no pauses (keystrokes per minute). 115 (± 11) 87 (± 10)

Pedometer (phone) Median time of day of first active pace from phone. 7:42 am (± 0:19) 9:08 am (± 0:42)

Energy Survey Fraction of days with no energy survey response. 0.17 (± 0.07) 0.33 (± 0.08) 

Energy Survey Median time of day of energy survey response. 10:38 am (± 0:35) 12:43 pm (± 0:52)

Messages Total number of messages received. 179 (± 68) 110 (± 43)

two age-matched cohorts of 31 symptomatics and 31 healthy con-
trols with an average age difference of less than six months2. We
re-ran the full analysis on these age-matched cohorts and report the
results in Table 3. After controlling for age via matching, there was
a large drop in performance for the demographics only models (AU-
ROC=0.519, AUPRC=0.536). However, device-derived features still
showmoderate performance, with AUROC decreasing from 0.771 to
0.726 on the full cohort, and AUPRC increasing from 0.628 to 0.758.
The boost in precision is mainly to be attributed to the change
in class balance (31:31 in the age-matched case, vs 31:82 in the
full cohort), which decreases the ratio between true positives and
predicted positives. AUROC and AUPRC scores were significantly
higher (p<0.0001, permutation test) for the models which included
the device-derived features than the demographics-only models.
Finally, model performance no longer improved when demographic
features were added, indicating that device-derived features capture
differences between healthy controls and symptomatic individuals
that go above and beyond normal aging.

Mild AD dementia Cases. We additionally report the performance
of the model when classifying healthy controls vs. individuals with
mild AD dementia. Although results have been reproduced with
2Due to age distributions of the two sub-cohort (see Section 7, attaining a higher ratio
of healthy control vs. symptomatics was not possible, despite availability of more
healthy controls. Similarly, matching on gender in addition to age also resulted in a
drastic reduction of sample size.

different models (see Section 7 for details) we caution against opti-
mistic interpretation due to the very small number of individuals
with mild AD dementia in the symptomatic cohort (n=7). The ra-
tionale for making these comparisons is that detecting differences
in cognitive impairment should be easier as impairment increases.

The model performed better when classifying individuals with
mild AD dementia. Device-derived features and device features plus
demographics achieved AUROC in the low 90s 3, (AUPRC = 0.804
for device-derived features and demographics). Using only device-
derived features on the age-matched cohorts gets AUROC = 0.897.

5.1 Feature Importance
To understand the predictions made by XGBoost, we used a recent
approach called SHapley Additive exPlanations (SHAP), which com-
bines game theory with local explanations to explain machine learn-
ing models [28]. SHAP values are reported for an XGBRegressor
model with a pairwise objective function (and default parameters
otherwise) that was trained on the device-derived features for the
age-matched cohorts. The SHAP values for the top 20 features are
illustrated in Figure 5 and the top 5 features are described in Table 4.
Overall, a few trends emerged that were important in identifying
symptomatic individuals for our model:
3Due to the small number of mild AD dementia, 95% CIs of device-derived features
and device-derived features + demographics are quite large, the inversion of AUROC
when adding demographics to device-derived features is non-significant
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SymptomaticControl

Reg

Figure 5: SHAP values of top 20 features of hand-tuned XG-
Boost model trained on the age-matched cohorts.

• Slower typing: Symptomatic participants tended to have slower
typing than healthy controls. These results are in line with pre-
vious work [36], and may be the result of impaired fine motor
control, difficulties with language, or both.

• Less regularity and later first steps: In general, symptomatic
individuals exhibited less routine behavior compared to healthy
controls, as measured by the larger interquartile range of the
times of the first and last phone acceleration each day, which
likely correspond to picking up the phone for the first time and
setting down the phone for the last time each day, respectively.
We also found that symptomatic participants tended to take their
first step (as measured by the phone’s pedometer) later in the
day. Similar patterns have been observed in previous work as
associated with MCI [25].

• Fewer text messages: Symptomatic participants received fewer
text messages in total (and per day) and had a lower interquartile
range of daily outgoing messages.

• Greater reliance on helper apps: Symptomatic individuals
spent more total time in the Clock app than healthy controls
and were more likely to view or access Siri’s app suggestions.

• Poorer survey compliance: Symptomatic individuals answered
the daily one-question surveys less often than healthy controls
and, when they did respond, tended to respond later in the day.

6 DISCUSSION
The goal of this study was to assess the feasibility of collecting
data in cognitively impaired individuals and healthy controls from
multiple smart devices and to test whether the data can differentiate
between these groups. We addressed the engineering and analytic
challenges that accompany collecting large amounts of data from
different devices and we adopted an approach that can appropri-
ately handle data quality issues (including missing data) that are
inherent in real-world settings. We also demonstrated the utility
of using device-derived features to detect cognitive impairment in

the small cohort of 31 symptomatics and 82 healthy controls in-
cluded in the analysis, presenting a model achieving AUROC=0.80
using device-derived features and demographic data. To put our
results into context, diagnostic AUROCs of computerized cognitive
tests in analogous groups range from 0.67 to 0.97 [2]. In contrast,
the authors of TATC [25] reported AUROC=0.62 in detecting MCI
from actigraphy data only. Other digital assessments to discrimi-
nate between AD and healthy controls have been tested, including
typing speed, speech and language, eye movements, and pupillary
reflex [23]. Although individual sensors and domains show promise,
no other study has yet created a digital signal to assess cognitive sta-
tus from multiple sensors. Two ongoing projects are using passive
data in Alzheimer’s disease. The PRISM study employs an app to as-
sess and characterize social withdrawal from passive data in specific
diseases including AD dementia [10]. The RADAR-AD study mea-
sures disability progression associated with AD using smart phones,
wearables, and home-based sensors (https://www.radar-ad.org/).

Since this is a feasibility study, we prioritized obtaining inter-
pretable results that can be used in designing future studies. We
also explored using TICC [18], which was recently adopted on an-
other study on AD dementia using actigraphy data [25], but found
that it was too sensitive to missing data to be applied to the cur-
rent data set. These results are a starting point, and more accurate
classification may be possible with longer longitudinal data, larger
cohort sizes, and other advances in passive data collection. Among
the next steps in the analysis of this dataset specifically, are more
in-depth explorations of accelerometer, audio, and video data.

In the future, smart devices may be harnessed to monitor the
symptoms of patients who have already been diagnosed with MCI
or AD, detect individuals who may be vulnerable to developing
MCI, test the effectiveness of current symptomatic therapies, accel-
erate the development of new therapies, or be used in conjunction
with traditional diagnostic tools (such as medical history, imaging,
cognitive tests, or self-reports) to improve the accuracy of dementia
diagnosis. However, additional research and validation are needed
before these applications become a reality. Privacy is of particu-
lar importance in any clinical application. Regulations such as the
General Data Protection Regulation (GDPR) require applications
dealing with longitudinal data to implement the "right to be for-
gotten." To comply, any implementation of these algorithms would
require limiting the data collected centrally and providing users
more on-device control.

Our approach is not without limitations. First, some of the pat-
terns we found are associated with behaviors that are modifiable.
Shifts in behaviors not associated with the progression of the un-
derlying disease must be properly accounted for in future work.
Further, there is the potential that a passive measure of cognitive
performance could be self-reinforcing; without the knowledge of
actions to take to mitigate any potential decline, the knowledge of
the decline might cause decline itself.

Finally, we recognize potential risks in the creation of automated
decisionmaking tools trained on datawhose distributionmay not be
representative of the target population, or may shift over time [15],
and of the complex tradeoffs between fairness and accuracy of
predictive modeling in the context of applications where human
well-being is at stake, such as healthcare and criminal justice [7].
We believe a promising direction to address these challenges is to
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minimize the cross-sectional nature of the model by considering
applications to N-of-1 longitudinal settings, in which the system
is set to detect changes of an individual’s behavior relative to the
behavior of the same individual in the past.
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7 OPTIONAL SUPPLEMENT -
REPRODUCIBILITY SECTION

To aid reproducibility, we borrow the datasheet for datasets 4 and
model card 5 formats to report details about our dataset, data pro-
cessing pipeline, and models.

7.1 Dataset
• Whywas the dataset created? This dataset was created as part
of the Lilly Exploratory Digital Assessment Study, which aimed
to 1) assess the feasibility of collecting data via smart devices in a
population with cognitive impairment and 2) explore the utility
of the data in measuring cognitive impairment.

• Who funded the creation of the dataset? Eli Lilly and Com-
pany funded the creation of this dataset.

• What are the instances? Howmany instances of each type
are there? Instances consist of participants who completed the
study: 82 healthy participants, 24 with MCI, and 7 with mild AD.

• How was the data collected? The data was collected from pro-
vided iPhones, Apple Watches, and Beddit devices via bespoke
study apps. Active tasks were performed within the Digital As-
sessment App on an iPad every two weeks at the participants’
homes.

• Over what time-frame was the data collected? Data was col-
lected over a 12 week period for each participant. In all, data was
collected from December 2017 to November 2018.

• Does the dataset contain all possible instances?No, the data
only contains a subset of the population, which is all older adults.

• Is there information missing from the dataset and why?
Yes, due to technical issues, 35 participants do not have any
distance data, 5 do not have any data from health-kit (heart
rate, stand hours, stairs climbed), 10 do not have accelerometer
data from the phone, and 9 do not have any Beddit data. Data
coverage for other data sources may be sporadic due to device
usage, proximity to sensors, traveling, etc.

• Other comments about data collection? The location data
was processed prior to ingestion to maintain anonymity. GPS
data was converted to the distance away from home in meters.
No distance data was received if the home location was not set.
For participants who did not manually set a home location, a
home location was inferred after 30 days.

• How is the dataset distributed? Who is supporting/ host-
ing/ maintaining the dataset? The dataset is proprietary of
Eli Lilly and Company and Apple Inc. and cannot be shared or
distributed. Evidation Health Inc. is maintaining the dataset on
its secure Study Platform.

• If the dataset relates to people (e.g., their attributes) or was
generated by people, were they informed about the data
collection? Yes, all participants were explicitly told what data
would be collected and consented to participate in the study. Par-
ticipants were told that their data would remain confidential and
an alphanumeric code would be used to identify their data. The
study was approved by the Western IRB and Boston University
IRB.

4Gebru, Timnit, et al. 2018. Datasheets for Datasets. arXiv preprint arXiv:1803.09010
5Mitchell, Margaret, et al 2018. Model Cards for Model Reporting. arXiv preprint
arXiv:1810.03993

Cohort N % Female Age (±95 CI)
All controls 82 71% 66.3 (± 0.8)
Matched controls 31 71% 69.0 (± 1.5)
MCI 24 54% 69.0 (± 1.8)
Mild AD 7 57% 72.1 (± 3.5)

Full cohort Age-matched cohort

Age Age

Figure 6: Demographics of the full and age-matched cohorts.
Healthy controls in gray, Symptomatics in blue.

• Does the dataset contain information that might be con-
sidered sensitive or confidential? The full dataset includes
information about demographics and medical history. We pur-
posefully limited the type of data that was collected to reduce the
collection of sensitive data. For example, distance data was pro-
cessed prior to ingestion to remove information about location
and we did not collect information about the content of phone
calls or messages, just their timestamps.

7.2 Data Pre-processing: Behaviorgrams
This section describes the steps taken to convert the event stream
and time-series data sources into behaviorgrams.
• To link participants’ behaviors to times of day, we converted all
timestamps from Coordinated Universal Time (UTC) to partic-
ipants’ local time. Conflicts that arose from timezone switches
(due to travel or daylight saving time) were adjudicated by delet-
ing earlier time points within the overlapping time periods.

• In order to map all participants’ data onto a single time index, we
converted all timestamps to the time elapsed since the midnight
of participants’ enrollment date.

• Timepoint data were mapped to second-level resolution evenly
spaced time-series and the values falling within each minute
were either summed (for steps, stairs, missed calls, and messages)
or averaged (for pace, stride, heart rate, and survey responses) to
produce the minute-level-resolution sampling.

• Data associated with time intervals were similarly converted to
a minute-level resolution time series that represented the frac-
tion of the minute spent doing an activity (for workout sessions,
breathe sessions, stand hours, exercise, phone calls, phone un-
locks, and app usage) or the average value during the minute (for
distance away from home).

• We converted the 100 Hz raw accelerometer data to minute-level
aggregates by taking the L2 (Euclidean) norm of the X, Y, and
Z accelerations at each timepoint, applying a low-pass filter to
reduce the effects of gravity, and averaging the resulting values
within each minute.

The following preprocessing steps were applied to the behavior-
grams prior to feature computation:
• Heart rate was linearly interpolated only within gaps of 15 min-
utes or less. This was done because heart rate was sparsely and
dynamically sampled (more measurements were collected during
high-activity bouts), so some features would be skewed towards
higher values without imputation.

• Stride length was normalized by dividing by participants’ height
in meters.

• Upon inspection of the behaviorgrams, it was discovered that
the phone accelerometer showed a spike of activity every two
hours (but at different times across participants). To remove these
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spikes, minutes of the day with a 5th percentile acceleration >
0.05 across the study days were replaced with NaNs and linearly
interpolated.

• Sleep stage data were associated with start timestamps but no
end timestamps, making the sleep stage durations unreliable. The
sleep cycle data was used to clean the sleep stage data by setting
the sleep stage channels to NaN for minutes with no sleep cycle
data.

• Datawas transmitted continuously for some of the evenly-sampled
data channels. To aid the time-of-day computations and to avoid
creating features that were biased by device usage levels, we
set sleep cycle values equivalent to 0 and phone accelerometer
values < 0.005 to NaN.

7.3 Model card
7.3.1 Model Details.

• The model was trained to differentiate individuals with and with-
out MCI/mild AD, given features computed from two-weeks of
passively collected data and performance on a set of psychomotor
tasks. Biweekly predictions were averaged to predict diagnosis
at the individual-level.

• The data set was divided into training (70%) and test (30%) sets and
3-fold cross validation was performed within the training set only
to tune hyper-parameters. The hyper-parameters that produced
the highest mean AUROC across the 3 folds were used to train
the full training set and model performance was evaluated on the
test set. The outer 70/30 split was performed 100 times, shuffling
between iterations. Both the outer and inner splits were grouped
by participant and the outer split was stratified by diagnosis.

• Developed by researchers at Apple, Lilly, and Evidation Health
in 2018-2019.

• XGBRegressor with labels healthy control=0, MCI=1, mild AD=2.

7.3.2 Intended Use.

• Intended to be used by researchers to determine the feasibility of
detecting cognitive impairment with passive data and to identify
promising data sources.

• Not intended to be used for diagnosis or treatment decisions.

7.3.3 Factors.

• Potential factors that may influence the performance of the model
include the severity of individuals’ MCI or AD diagnoses, indi-
viduals’ baseline cognitive abilities and behaviors, additional de-
mographic information such as education or employment status,
device usage, study compliance, and the time period on which
passive features are computed (e.g., daily vs. weekly vs. monthly).

7.3.4 Metrics.

• The Area Under the Receiver Operating Characteristic (AUROC)
curve and the Area Under the Precision-Recall curve (AUPRC)
were used to measure model performance. We report the mean
and 95% confidence intervals of the AUROCs and AUPRCs across
all 100 outer shuffle splits.

7.3.5 Training Data.

• Ten weeks of data were split into five biweeks and features were
computed on each biweek. An additional set of biweekly features
were computed from a battery of digital psychomotor tasks.

Figure 7: Data coverage for channels in the behaviorgram
(columns) for all participants (rows). Channels with all NaN
values are in dark blue. Channels with the most all-null val-
ues include workout and breathe sessions (which are user-
initiated) and various apps (which may not be installed).

• 70% of the dataset was used to train the tuned model in each
outer shuffle split. Scikit-learn’s GroupShuffleSplit was used to
split the data.

7.3.6 Evaluation Data.

• 30% of the dataset was used to evaluate the tuned model in each
outer shuffle split.

7.4 Hyper-parameter search space
We used Hyperopt to select the best hyper-parameters for the XG-
BRegressor model within the given search space:
• Number of estimators: 100 to 400 with a step size of 100
• Learning rate: 0.05 to 0.20 with a step size of 0.05
• Max depth: 2 to 10 with a step size of 1
• Gamma: 1 to 10 with a step size of 1

7.5 Software and Hardware specifications
The following package versions were used (Python 3.5): XGBoost:
0.81; Scikit-learn: 0.19.1; Shap: 0.27.0; Pandas: 0.23.4; Numpy: 1.15.1;
Hyperopt: 0.2. The model iterations were run in parallel on a server
with 40 cores and 160 GB of RAM.

7.6 Independent Replication
The healthy control vs. symptomaticmodeling results were indepen-
dently reproduced using XGBoost’s XGBClassifier with hand-tuned
parameters (learning_rate=0.01, n_estimators=300, max_depth=4,
gamma=2.0, reg_alpha=1.0, min_child_weight=5, subsample=0.85,
colsample_bytree=0.8) and 60/40 outer grouped and stratified shuf-
fle splits. All averageAUROCswere reproducedwithinAUROC=±0.031.
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