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“ Measurement is the first step
that leads to control

and eventually to improvement. “

- James Harrington



• Nascar / Formula One

• Sports

• Insurances

• Sales / Marketing

• Online Advertising

• Logistics

Data Analytics



in Public Health we have

Disease Surveillance



Surveillance Systems

• Vital Statistics & Registries (e.g., births, deaths, defects)

• Population Surveys (e.g., substance abuse)

• Disease Reporting (e.g., salmonellosis, measles)

• Sentinel Surveillance (e.g., Influenza-Like Illnesses)

• Adverse Events Surveillance (e.g., issues with drugs)

• Laboratory Data



surveillance data

should be a byproduct
of any healthcare operation



Syndromic Surveillance

• Focuses on Early Detection

• Based on disease signs or symptoms, not diagnosis

• Novel sources: Emergency Room data, Drugs sales

• Uses well known Data Mining techniques

• Reduced delay in results



aggregate and analyze

Social Media Data
to monitor and predict health trends 
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Google Searches

Positive Tweets

Comprehensive Exam 
Alessio Signorini 

University of Iowa, May 2010
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The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic 
Alessio Signorini, Alberto Segre, Philip Polgreen 

PLoS ONE – Journal, May 2011



Using Twitter to Estimate H1N1 Activity 
Alessio Signorini, Alberto Segre, Philip Polgreen 

ISDS 2010 – 9th Annual Conference of International Society for Disease Surveillance

error ~0.28%

error ~0.37%

Estimate ILI%



Inferring Travel from Social Media 
Alessio Signorini, Alberto Segre, Philip Polgreen 

ISDS 2011 – 10th Annual Conference of International Society for Disease Surveillance

National

Local

Monitor Travels



can we use

“Social Travel Models”
to improve local flu trends prediction? 



City-Level Flu Trends
• CDC’s MMWR - Flu & Pneumonia Deaths for 122 cities

• Smoothed each week with values of prev/next 2 weeks

Philadelphia, PA - Deaths for 2012

New York City, NY - Deaths for 2012



Social Travel Data
• 240 Million geolocated tweets posted by 4 Million users

• Mapped over MMWR cities, discarded overlapping ones

• Used Spark   cluster of 8 machines to do geo-mapping

Volume of Trips among MMWR cities 2012
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COL

FAT
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Social Travel Model
• Final dataset: 78 cities, 124M tweets, 2.2M users

• Assumed “home” the most common location

• A “trip” was a post at home followed by one elsewhere

• Used population to scale volume of trips between cities



Correlation b/w Cities

San Jose, CA Atlanta, GA Philadelphia, PA



Predicting Flu Trends

• Flu Trends of 78 cities generated from MMWR data

• Used 2011 for training and 2012 for testing

• Support Vector Regression with polynomial kernel

• Target: value of local flu trend for that week

• Features: value of top 20 correlated cities 2 weeks before



Measures Compared
• Distance      closest 20 cities

• Similarity     most similar 20 cities on 2011 flu trends

• Flow           top 20 cities by number of visitors



Prediction Results

Dallas, TX

San Jose, CA



Failure Hypothesis
• Port-of-entry    influenced by international travels

• Noisy data        Watebury, CT had only 43 deaths in 2011

• Few data          Fort Wayne has 1/50th of Las Vegas’ users

Washington, DC - Flu Deaths 2012



Conclusions

• Social Media can be an important source for surveillance

• Can predict American Idol’s winner ;)

• Allows to monitor public sentiment about health topics

• Can effectively be used to monitor ILI% in real time

• Geolocated posts can be used to create travel models

• Social Travel Data provides additional predictive power 
for flu trends







Checkins Distributions
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Denver, CO

Distance Similarity

Flow



Smoothing Methods

5 weeks ahead 1 week around

2 weeks around


