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Abstract
BACKGROUND: Although patients with Alzheimer’s disease 
and other cognitive-related neurodegenerative disorders 
may benefit from early detection, development of a reliable 
diagnostic test has remained elusive. The penetration of digital 
voice-recording technologies and multiple cognitive processes 
deployed when constructing spoken responses might offer an 
opportunity to predict cognitive status. 
OBJECTIVE: To determine whether cognitive status might be 
predicted from voice recordings of neuropsychological testing.
DESIGN: Comparison of acoustic and (para)linguistic 
variables from low-quality automated transcriptions of 
neuropsychological testing (n = 200) versus variables from high-
quality manual transcriptions (n = 127). We trained a logistic 
regression classifier to predict cognitive status, which was tested 
against actual diagnoses. 
SETTING: Observational cohort study.
PARTICIPANTS: 146 participants in the Framingham Heart 
Study.
MEASUREMENTS: Acoustic and either paralinguistic variables 
(e.g., speaking time) from automated transcriptions or linguistic 
variables (e.g., phrase complexity) from manual transcriptions. 
RESULTS: Models based on demographic features alone were 
not robust (area under the receiver-operator characteristic curve 
[AUROC] 0.60). Addition of clinical and standard acoustic 
features boosted the AUROC to 0.81. Additional inclusion of 
transcription-related features yielded an AUROC of 0.90. 
CONCLUSIONS: The use of voice-based digital biomarkers 
derived from automated processing methods, combined with 
standard patient screening, might constitute a scalable way to 
enable early detection of dementia.
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Introduction

The incidence of dementia generally and 
Alzheimer’s disease specifically is increasing (1), 
largely because of the increased life expectancy 

of the global population, making this a major source of 
healthcare expenditure. Despite the increasing prevalence 

of dementia across the world, the disease is often 
diagnosed late in its progression. This is partly due to the 
heterogeneity of the disease both in symptom onset and 
progression.   

No single cognitive test exists that can accurately 
diagnose dementia, the subtype of Alzheimer’s disease, 
or the preclinical stage of mild cognitive impairment 
(MCI) across a culturally diverse population. Instead, 
diagnoses are reached through a combination of clinician-
administered tests, including assessments of medical 
and family history, cognitive function, other functional 
behaviors, peripheral biomarkers (e.g., nutritional 
deficiency), and, increasingly, brain imaging. Reliance 
on these diagnostic tools has led to significant health 
disparities in diagnosing, treating, and studying dementia 
and Alzheimer’s disease across the U.S. and around the 
world. 

Even within high-resourced environments, by the time 
traditional Alzheimer’s symptoms of declining memory 
are noteworthy, the neurodegenerative trajectory is 
believed to be on a near-irreversible course. While there 
is no definitely curative drug treatment for the disease at 
present, delaying onset by just 5 years could potentially 
cut societal prevalence in the U.S. by 50% (2, 3). Early 
detection, and thus early intervention, could improve 
quality of life, helping alleviate symptoms and slow the 
progression of disease (4, 5). 

Dementia is an insidious disease that takes up 
to decades to develop, and its nature provides the 
opportunity for prediction through subtle clinical changes 
that may appear years before a person meets the criteria 
for diagnosis. Increasingly, the use of digital biomarkers 
is being explored for screening and diagnosis, while 
‘digital therapeutics’ are also emerging (5, 6). Digital 
biomarkers are physiological and behavioral measures 
collected from participants through digital tools that can 
be used to explain, influence, or predict health-related 
outcomes (7). The deep penetration of smartphones with 
voice recorders, coupled with the fact that production 
of speech involves multiple cognitive domains, 
suggests that voice-based digital biomarkers could 
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open possibilities for a scalable, economical (automated 
transcription costs ~$1 per 15-minute sample) (8), and 
widely accessible (due to real-time administration and 
scoring of neuropsychological tests) test to detect changes 
in individuals who have not yet met the threshold for 
clinical symptoms (9). 

The goal of this study was to examine whether 
metrics extracted from digital audio recordings could 
serve as potential digital voice biomarkers, through 
the development of a predictive algorithm for earlier 
detection of cognitive dysfunction, and thereby improve 
outcomes. 

Methods

Ethics

The study protocol was approved by the Institutional 
Review Board of  Boston Univers i ty,  Boston, 
Massachusetts. All participants provided informed 
consent at the time of enrollment into the study. 

Study participants

The first-generation (Gen 1) cohort of the Framingham 
Heart Study (FHS) was enrolled in 1948 with 5,209 adult 
subjects from Framingham, Massachusetts, USA; the 
second-generation cohort (Gen 2, the biological children 
of the Gen 1 cohort and their spouses), in 1971; and the 
third-generation cohort (Gen 3), in 2001 (10). To reflect 
the growing racial/ethnic diversity of the region, the 
multi-ethnic Omni Generation 1 (OmniGen 1) and Omni 
Generation 2 (OmniGen 2) were enrolled beginning in 
1994 and 2003, respectively. 

Since 1975, participants in the FHS have been under 
surveillance for incident dementia (11). This has entailed 
having adults and older adolescents undergo periodic 
neuropsychological exams consisting of a set of standard 
tests to evaluate cognitive function (see details below). 
The audio for most of these sessions (see details below) 
has been recorded since 2005, creating a database of 
over 5200 sessions in August 2017. We analyzed a subset 
of digital voice recordings from 146 participants, all of 
whom had consensus-confirmed normal cognition, MCI, 
or dementia diagnoses. 

Demographic and clinical variables

Standard demographic data were collected at each 
neuropsychological exam for all participants, including 
age, sex, marital status, occupation type, and highest 
level of education obtained. Clinical data—which were 
collected through separate, regular general health 
exams—included laboratory data (serum glucose, low- 
and high-density lipoprotein cholesterol, triglyceride, 
and creatinine levels), body anthropomorphics (height, 

weight, body mass index, and hip and waist girth), 
physiological data (heart rate and blood pressure), and 
health behavior data (self-reported mood, physical 
activity, alcohol consumption, diet, sleep, and smoking). 
For analysis purposes, we extracted these clinical data 
from the general exam that had been performed closest 
to the time of consensus dementia determination (see 
below). We standardized quantitative clinical variables 
by taking the difference between the most recent measure 
and the historical maximum and minimum values. 

Neuropsychological exams and consensus 
determination of dementia labels

These exams consisted of both closed and open-ended 
questions as well as recall tasks. Testing included the 
Wechsler Memory Scale Logical Memory, Verbal Paired 
Associates, and the Wechsler Adult Intelligence Scale 
Digit Span tests (forward and backward). 

The Logical Memory test is a narrative recall task in 
which the proctor reads a story aloud and then asks the 
subject to recall the components of the story back to the 
examiner. The Verbal Paired Associates task requires the 
proctor to read the participant a list of words consisting 
of 10 word pairs: 6 “easy”, related pairs (e.g., words 
that are frequently associated, such as “stop-go”) and 4 
“hard”, unrelated pairs (e.g., words that are not typically 
associated, such as “bronze-hop”). The proctor then says 
one of the words and asks the participant to say which 
word went with it. This is administered three times, each 
time with feedback: either “that’s right” or “no, that one 
was [correct answer]”. During each of the three trials, the 
participant is consistently presented only with the first 
word of each pair and asked to provide the corresponding 
word. 

For the Digit Span Forward test, the proctor reads 
the participant a span of numbers, starting with three 
numbers in a monotone voice, and the participant must 
repeat the numbers. If the sequence is correct, they move 
onto a span of numbers one longer, and if it is incorrect, 
they are given a second chance for each span length. 
For the Digit Span Backward test, the proctor reads a 
sequence of numbers that the participant must repeat in 
reverse order.

Dementia determinations took place at various times 
after neuropsychological testing/voice recordings. For 
these reviews, the consensus diagnostic panel used a scale 
analogous to the Clinical Dementia Rating scale to classify 
dementia severity on a scale of “none” (0) to “severe” 
(3), modified with additional intermediates between 
each whole integer point. Participants were flagged for 
dementia review if they had a drop in Mini-Mental State 
Examination (MMSE) score, if they presented potential 
cognitive impairment at a neuropsychological exam, 
and/or were referred by FHS staff or a family member. 
Test results were reviewed by a consensus panel that 
included at least one neurologist and neuropsychologist. 
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The review panel determined cognitive status markers on 
a case-by-case basis using supporting sources of medical 
information (e.g., neuropsychology and neurology 
exams, family interviews, FHS health exams, and external 
medical records). Details of the consensus process have 
been published previously (11-13). This consensus 
diagnosis of dementia and any subtype diagnosis (e.g., 
Alzheimer’s disease) served as the gold standard against 
which the predictive models were developed. The 
consensus diagnosis for each sample was used only to 
train (as target labels) and quantify the performance of 
the predictive models and were not used as inputs to 
them. For the purposes of this project, all participants 
whose recordings were used for the cognitively normal 
(CN) analyses were verified to be CN at the time of the 
recording.  

Audio recordings of neuropsychology exams

Digital voice recordings consisted of a structured 
conversation between a proctor, who was a trained 
clinical staff member of the FHS, and the FHS participant, 
who may or may not have been cognitively impaired. 
Through a semi-supervised approach that complemented 
automated speech-to-text with manual tagging of a 
few relevant parts of the neuropsychological test, all 
personally identifiable information was removed from 
recordings before linking to other deidentified FHS health 
data.

Overview of acoustic analysis

Acoustic analysis, speech transcription, and language 
processing were used to automatically reduce voice 
segments from recordings into a set of candidate digital 
biomarkers. Specifically, we extracted acoustic variables 
(capturing the temporal and spectral characteristics of a 
person’s voice) from all recordings of neuropsychological 
testing. 

Language-based variables were computed from the 
annotated text obtained through both automated (IBM 
Watson) and manual transcriptions. For hand-transcribed 
recordings, linguistic variables were extracted that 
captured characteristics of the grammar and complexity 
of the responses. In the automatically transcribed 
recordings, the quality of the transcription was not 
sufficient to allow linguistic analysis. We could compute 
variables relating to the timing and frequency of words, 
however, which we termed “paralinguistic” variables. 

Automated transcription generation 

IBM Watson’s application program interface (API) 
transcribed the recordings, and provided the best guess 
for the word, a measure of uncertainty that the word was 
correct, and start/end timestamps at a precision of 0.01 
s. The API then prioritized for manual diarization based 

on age, dementia status, and specific neuropsychological 
test completion. This approach provided 1) high-accuracy 
word and pause lengths, 2) the ability to precisely 
identify snippets of anonymized audio when combined 
with manual diarization, and 3) a measure of text 
translatability in the form of word uncertainties. 

For 248 recordings (of which 200 consented by 
participants to be analyzed by a commercial company), 
diarization was manually completed to distinguish 
between speakers for the Logical Memory, Verbal Paired 
Associates, and Digit Span tests. Codes used to refer to 
each subsection of interest are shown in Supplementary 
Table 1.

Manual transcription generation

For 140 recordings (of which 127 consented by 
participants to be analyzed by a commercial company), a 
professional transcription company created timestamped, 
diarized transcriptions to gauge the efficacy of the 
automated transcription and diarization method. These 
transcriptions provided high-accuracy, grammatically 
meaningful representations of the audio files. The 
professional transcriptions were double-checked by the 
research team at Boston University to confirm relative 
accuracy.

Acoustic variable extraction

To generate acoustic variables, the audio corresponding 
to participant speech was extracted, which included 
both diarized automated-transcription files and manual 
diarizations. Variables from the raw waveform were 
then extracted using the Massachusetts Institute of 
Technology’s featurization algorithm and the openSMILE 
toolkit (14) with a frame size of 20 ms and a step size 
of 10 ms. Spectral and temporal characteristics of 
a subject’s voice, including mel-frequency cepstral 
coefficients (MFCCs), pitch, and root-mean-square energy 
(RMS), were computed across these windows based on 
the variable list associated with the 2013 Interspeech 
Paralinguistics Challenge (15). Voicing probability 
was used to remove extended periods of silence from 
the samples, and the energy-based variables were 
normalized. Aggregation was done over the frames, 
computing mean, median, standard deviation, minimum, 
and maximum values to generate the final acoustic 
variable set. The following variables were computed 
and used: MFCCs, fundamental frequency (F0), voicing 
probability, local jitter, difference of differences jitter, 
local shimmer, harmonics to noise ratio (HNR), power 
spectrum (audspec), relative spectral transform (RASTA), 
zero crossing rate, and RMS.
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Paralinguistic variable extraction (automated 
transcriptions)

After processing, we computed the paralinguistic 
variables from automated transcription (Watson) on 
each of the sections identified as well as the full text. 
Detailed descriptions of these variables and codes are 
provided in Supplementary Table 2. Although computing 
variables on the full text added additional noise to the 
signal due to inclusion of the proctor’s speech, this was 
standard across all exams due to their scripted nature. 
To featurize these data, we considered word use, speech 
time, word certainty, and Bristol-norm variables (16). 
Word use variables included the number of words, the 
fraction of stop words used, and the fraction and count 
of common words. Common words were defined as the 
top 10 most frequently used words for each section, and 
they can be viewed as a problem-specific assessment 
of how similar the participant’s answer was to that of 
others. Speech time variables included the total speaking 
time, mean and standard deviation of word and pause 
lengths (in seconds), fraction of time spent pausing, total 
section time, and fraction of that section the participant 
was speaking. The average and standard deviation of 
word uncertainty provided by the Watson algorithm 
were also included. Bristol norm variables quantified 
the age of word acquisition, imageability, familiarity, 
neighborhood size, mean log bigram frequency, and 
number of letters, syllables, and phonemes for a subset 
of words. The full set of words in the diarized sections 
was sorted for variant forms of the same word using the 
Princeton Wordnet lemmatizer (wordnet.princeton.edu). 
We computed the mean and standard deviation of these 
properties as well as the fraction of words used that have 
computable Bristol norms.

Linguistic variables extraction (manual 
transcriptions)

Manually transcribed files contained fully diarized, 
accurate, and grammatically meaningful text. The 
fidelity of these transcriptions allowed applying 
natural language processing (NLP) techniques 
to extract information from the grammar of the 
sentences to evaluate the complexity of the responses. 
Additional variables included embeddings (numerical 
representations of text) from pretrained language 
models such as doc2vec (17). Specifically, one model was 
trained to learn representation from the participant’s 
responses, and another to learn representation for the 
whole conversation. These two embeddings were then 
concatenated to use as variables for the text classification 
task. Each model was trained using the distributed 
bag-of-words training algorithm, with 100-dimension 
embedding and a window size of 5, negative sampling 
of 10, and minimum count threshold of 5. Linguistic 
variables were therefore generated based on the whole 

interview, as opposed to the paralinguistic variables, 
which were generated based on different sections of the 
interview as well as the whole session. 

To analyze the use of production rules, we used the 
Charniak-Johnson parser trained on the Wall Street 
Journal (18, 19). We also computed the frequency 
of the top 50 most common production rules over all 
transcriptions (20). The mean, standard deviation, and 
5th, 50th, and 95th percentiles of the tree height; number 
of phrases; and parser score of the selected tree over all 
sentences were also computed. The top 10 production 
rules found with their relative frequencies are listed in 
Supplementary Table 3. Bristol norm variables were 
computed as for the automated transcriptions with the 
addition of a part-of-speech tagger implemented in the 
natural language toolkit (NLTK) Python module (21) to 
improve lemmatization. We also computed qualitative 
measures such as the fraction of nonverbal breaks (e.g., 
filler words, laughing, crosstalk) over the total number 
of words spoken by each participant. Finally, additional 
measures of syntactic complexity using the L2 syntactic 
complexity analyzer were computed (22). This analysis 
returns the frequency of words, sentences, verb phrases, 
clauses, T-units, dependent clauses, complex T-units, 
coordinate phrases, and complex nominals, and takes 
14 ratios of these frequencies that represent various 
measures of sentence complexity. These variables were all 
generated based on the whole transcript, as opposed to 
different sections of it.

Predictive model development

Participant cognitive status—no impairment, MCI, or 
dementia—was modelled from available demographic, 
clinical, acoustic, and linguistic and/or paralinguistic 
variables. Specifically, two machine-learning classifiers 
were trained to predict cognitive status: one using 
demographic, clinical, acoustic, and linguistic variables 
for participants with hand-transcribed recordings and one 
using demographic, clinical, acoustic, and paralinguistic 
variables for those with automated transcriptions. Figure 
1 shows the categories of variables available for each 
subset of recordings. 

For both of these machine-learning classifiers, the 
audio data originated from the voice recordings of 
neuropsychological testing. In contrast, the clinical data 
were the most recent available at the time of dementia 
determination, which came after a significant time delay 
from the neuropsychological testing in some cases. This 
difference in time of information acquisition reflects 
typical real-world practice, i.e., using the results of 
prior neuropsychological tests combined with the most 
recent clinical information when determining a patient’s 
dementia status. 

We first applied the Disparate Impact Remover (DIR) 
(23) to account for age and sex biases in the data. This was 
an unsupervised preprocessing step that transformed the 
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variables such that they could not be used to distinguish 
age/sex while also preserving relevant information. DIR 
has a hyper-parameter (repair value), between 0 and 1, 
that sets the deconfounding level of the transformation. 

Because there was near-zero bias in the dataset, we set the 
repair value to 1 for all analyses except for the common 
subset. For the latter analysis, a repair value of 0.7 was 
used. 

Figure 1. Description and availability of variables for different types of recordings (before selection)

Figure 2. Mean area under the receiver operating characteristic (AUROC) curve and 95% CI for age- and sex-adjusted 
logistic regression models across 100 splits of group-stratified cross-validation, among participants with automated 
transcriptions
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We then used the minimum redundancy/maximum 
relevance (MRMR) method (24), which selects the top-
ranking variables by maximizing their relevance towards 
the label (F-test) and minimizing their redundancy 
(correlation). To use MRMR in cross-validation, the top-N 
variables are chosen in each fold of nested training before 
hyperparameter tuning. Variables consistent across folds 
(selected as top-N in different folds) are identified, and 
the model hyperparameters are tuned only on them. 
N was chosen to be one of {10, 20, .., 50} as part of the 
hyperparameter tuning. 

A logistic regression classifier was trained and used 
the mean area under the receiver operating characteristic 
curve (AUROC) scores across a group-stratified shuffle (N 
=100, 80/20 train/test split) for cross-validation, in which 
samples from subjects were held together in either train/
test split (group), cohort labels were balanced across 
train/test split (stratified), and this process of train/test 
splitting was repeated n = 100 times (shuffle) and metric 
spread reported.

Since analyses were limited to fully deidentified 
recordings and records, only a small subset from the 
entire dataset was used for analysis. Considering 
recordings only from those who had dementia (clinically 
diagnosed dementia rating of 1, 2, or 3; n = 110) or CN 
(dementia rating of 0; n = 35), a cohort of 145 recordings 
emerged from which to test the predictive model (cohort 
demographics for all three recording groups with 
automated transcripts are provided in Supplementary 
Table 4). 

Results

Automated transcription

We first considered the set of participants (n = 78) with 
a total of 200 automatically transcribed (via IBM Watson) 
recordings. The task was broken down into three binary 
classifications to discriminate between 1) CN controls 
and those with dementia, 2) CN and those with MCI, 
and 3) those with MCI versus dementia. (We also tried a 
single model with pairwise ranking objectives of CN < 
MCI < dementia, and the resulting area under the receiver 
operating characteristic curve [AUROC] for pairwise or 
1-vs-all discrimination was comparable to the current 
approach.)

In computing the demographics for each set of 
transcripts, the same participant demographics could be 
represented in multiple subgroups. This stems from the 
fact that some participants contributed more than one 
recording and in subsequent recordings had progressed 
to MCI and/or dementia. CN persons (n = 35 recordings) 
had a median age of 83; those with MCI (N = 55 
recordings), a median age of 81; and those with dementia 
(n = 110 recordings), a median age of 83. There were no 
significant differences among these recording subgroups 
in terms of age or sex distribution (Supplementary Table 
4).

As seen in Figure 2, the use of demographic and 
clinical variables, alone or combined, yielded AUROC 
scores of < 0.70 in all comparisons. The scores for acoustic 
and paralinguistic variables each approached or exceeded 
0.80. Putting all four types of variables together offered 
performance in the 0.80–0.90 AUROC range. 

As an additional step of validation, we removed all 
MCI recording data and reran the CN-versus-dementia 
model for prediction. Figure 3 shows that the mean of 
predicted scores for MCI recordings lay between the two 
extreme groups, as expected. Similarly, CN-vs-MCI and 
MCI-vs-dementia models and their held-out samples are 
shown in Supplementary Figures 1 and 2, respectively.

Ultimately, across the various sets of variables, 
paralinguistic variables were the primary drivers of 
discrimination between CN recordings and dementia 
recordings, with an AUROC of 0.87 by themselves for this 
comparison. Variables selected to train logistic regression 
classifiers for CN versus MCI or dementia are shown 
in Figure 4. Of the 20 selected variables, 12 captured 
paralinguistic features (e.g., speaking time, section time, 
word mean time, etc.) from the interview and not from 
the content of the transcription. In addition, the selected 
variables belonged to different parts of the interview. 

Of particular interest were the speaking time variables. 
Recordings from those with dementia usually lingered 
(“section_time” variables) on the Verbal Paired Associates 
task (Figure 4), but typically took half as long to complete 
the Logical Memory test, likely because fewer story 
details are recalled. Another major word feature was the 

Figure 3. Predicted area under the receiver operating 
characteristic curves for participants with mild 
cognitive impairment, using the adjusted “Acoustic + 
Paralinguistic” logistic regression model discriminating 
healthy controls from those with dementia. The Y-axis 
represents the histogram count of subjects in the test set, 
and the vertical lines represent the means of the curves
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fraction of stop words used throughout the full exam; 
recordings from participants with dementia were likely 
to include sentences with a higher rate of stop words, 
resulting in this variable being predictive of cognitive 

impairment. Word certainty, which indicates the level 
of confidence the Watson model has in transcribing the 
word, was much higher in the participants with dementia. 
Recordings from participants with dementia also had a 

Figure 4. Paralinguistic variables used to train a logistic regression classifier for cognitively normal (CN) participants 
versus those with mild cognitive impairment (MCI; green circles) or dementia (DM; blue circles) 

Figure 5. Mean area under the receiver operating characteristic curve (AUROC) and 95% CI for age- and sex-adjusted 
logistic regression models across 100 splits of group-stratified cross-validation, among participants with manual 
transcriptions 
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low mean age of word acquisition, with high mean and 
low variance word certainty. 

Manual transcriptions

Manual transcriptions (n = 127) were available for 
a subset of 113 participants. Manual transcription can 
reach higher accuracy than automated (IBM Watson-
based) transcriptions, which often do not return coherent 
sentences needed for accurate grammar analysis.

Similar to Supplementary Table 4, Supplementary 
Table 5 provides demographics based on the 
demographics of the participant at the time of recording 
and some participants’ demographic information 
is duplicated in each of the 3 subgroups. Since only 9 
recordings were from those with MCI, we merged their 
data with recordings from participants with dementia (n 
= 32) and compared to recordings from CN. 

Table 1. Comparison of automatically transcribed 
paralinguistic features and manually transcribed 
linguistic features to discriminate between healthy 
controls (n = 22 recordings) and participants with 
mild cognitive impairment (MCI) or dementia (n = 37 
recordings)
Type of variables Mean AUROC (95% CI)

Paralinguistic only 0.83 (0.81–0.86)
Linguistic only 0.91 (0.89–0.93)
Paralinguistic + linguistic 0.92 (0.90–0.93)

In this group, 49% of the recordings in CN were from 
participants 67 years or younger (the lowest age in the 
subgroup with cognitive impairment). To allow the 
de-confounding algorithm to work, we trained the model 
on data from recordings of participants older than 67 
(total n = 85; Supplementary Table 6). Similar results 
were obtained in modelling the unfiltered dataset (data 
not shown). After excluding these samples, there were 
significantly more recordings of women in the subgroup 
with MCI or dementia (73% vs 50% in CN subgroup; P = 
0.04).

As seen in Figure 5, demographic and clinical variables 
yielded AUROC scores < 0.70 for discrimination of CN 
recordings from recordings from those with cognitive 
impairment, both individually and when combined. 
Acoustic and linguistic variables each yielded AUROC 
scores ≥ 0.80, as did all other combinations of variable 
sets.

Similar to the automated-transcription findings, mean 
age of word acquisition appeared to be an important 
feature in the manually transcribed dataset (Figure 
6). Overall, the results for linguistic variables in the 
manual-transcription dataset were similar to those for 
paralinguistic variables in the automated-transcription 
dataset for discriminating CN from recordings from those 
with cognitive impairment.  

Paralinguistic versus linguistic variables

Demographic characteristics of the 45 participants 
who had both manual and automated transcription data 
(n = 59 recordings) are shown in Supplementary Table 7; 
demographic data was duplicated from those participants 
who contributed recordings to more than one cognitive 
status group. Age and sex did not differ significantly by 
cognitive status in this common dataset.

Table 1 shows the results for modelling discrimination 
of recordings from CN from those with cognitive 
impairment. High-quality manual transcription from 
interviews improved model performance, both alone and 
combined with data from automated transcription, as 
would be expected.

Discussion

This study illustrates how voice might be a useful 
tool in identifying persons with dementia. From a 
combination of linguistic, paralinguistic, acoustic, 
demographic, and clinical characteristics, it might be 
possible to predict cognitive status with a relatively high 
degree of certainty. Our models based on paralinguistic 
variables derived from automated transcription 
performed better (AUROC 0.87) than those based on 
simple acoustic variables (AUROC 0.79). In addition, 
when a good manual transcription was available, 
natural language processing techniques and embeddings 
significantly improved predictive accuracy (AUROC 
0.92 in the common subset). Thus, these models might 
be applicable to a variety of situations ranging from low-
quality audio captured over phone conversations to high-
fidelity transcriptions of in-person visits.

This retrospective study adds to recent research and 
applications proposing the use of voice as a digital 
biomarker for disease progression and screening not only 
for dementia (25, 26) but also across therapeutic areas 
(27-29). Digital biomarkers can be measured in real time 
and are generally less expensive to compute—automated 
transcription of neurophysiological tests costs ~$1 per 
15-minute sample compared with $2 per minute for 
manual transcription—and less invasive than traditional 
biomarkers. 

While these initial findings are promising, experiments 
must be repeated with larger digital datasets of 
medical and audio samples on which to train and test 
algorithms and in more racially and culturally diverse 
populations. In addition, better audio quality will 
translate to more accurate automated diarization and 
transcriptions and will enhance the specificity of variables 
computed purely on acoustic patterns. Supplementing 
the dataset with other health-related data sources (e.g., 
minute-level heart rate and steps) is also recommended 
for future prospective studies, to provide even better 
contextualization data to enhance accurate clinical 
interpretation of digital biomarkers (30). Finally, while 
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the current work shows good discrimination power of 
the models proposed, further research is needed to study 
model calibration to specific applications and settings 
(31).

The implications of this study are potentially globally 
significant. There is currently no single assessment 
method that can be applied uniformly regardless of a 
person’s age, sex/gender, education, language, or culture. 
All current cognitive screening and more comprehensive 
neuropsychological test protocols are confounded by 
these factors. Recording of voice is possible even in the 
lowest-resourced settings.  Further, speech production, 
which involves multiple cognitive domains, is a skill that 
most people are able to do. Thus, digital voice indices 
could perhaps serve as highly predictive digital voice 
biomarkers of Alzheimer’s disease, possibly providing a 
low-cost, easily scalable worldwide solution to address 
persistent health disparities in diagnosis, treatment, 
and clinical studies of cognition-related disorders. 
Importantly, the possibility of an economical and 
accessible voice-based digital biomarker test for cognitive 
impairment could allow early detection in people who 
have not yet met the threshold for clinical symptoms and 
trigger interventions that can alter the trajectory of change 
or prevent disease altogether. As research is translated 
into practice, applications must be built with a privacy-
first approach, as voice is arguably the carrier of the most 
sensitive information pertaining to an individual.
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