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Abstract

BACKGROUND: Although patients with Alzheimer’s disease
and other cognitive-related neurodegenerative disorders
may benefit from early detection, development of a reliable
diagnostic test has remained elusive. The penetration of digital
voice-recording technologies and multiple cognitive processes
deployed when constructing spoken responses might offer an
opportunity to predict cognitive status.

OBJECTIVE: To determine whether cognitive status might be
predicted from voice recordings of neuropsychological testing.
DESIGN: Comparison of acoustic and (para)linguistic
variables from low-quality automated transcriptions of
neuropsychological testing (n = 200) versus variables from high-
quality manual transcriptions (n = 127). We trained a logistic
regression classifier to predict cognitive status, which was tested
against actual diagnoses.

SETTING: Observational cohort study.

PARTICIPANTS: 146 participants in the Framingham Heart
Study.

MEASUREMENTS: Acoustic and either paralinguistic variables
(e.g., speaking time) from automated transcriptions or linguistic
variables (e.g., phrase complexity) from manual transcriptions.
RESULTS: Models based on demographic features alone were
not robust (area under the receiver-operator characteristic curve
[AUROC] 0.60). Addition of clinical and standard acoustic
features boosted the AUROC to 0.81. Additional inclusion of
transcription-related features yielded an AUROC of 0.90.
CONCLUSIONS: The use of voice-based digital biomarkers
derived from automated processing methods, combined with
standard patient screening, might constitute a scalable way to
enable early detection of dementia.

Key words: Dementia, AD screening, biomarkers, predictive modeling.

Introduction

The incidence of dementia generally and
Alzheimer’s disease specifically is increasing (1),
largely because of the increased life expectancy

of the global population, making this a major source of
healthcare expenditure. Despite the increasing prevalence
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of dementia across the world, the disease is often
diagnosed late in its progression. This is partly due to the
heterogeneity of the disease both in symptom onset and
progression.

No single cognitive test exists that can accurately
diagnose dementia, the subtype of Alzheimer’s disease,
or the preclinical stage of mild cognitive impairment
(MCI) across a culturally diverse population. Instead,
diagnoses are reached through a combination of clinician-
administered tests, including assessments of medical
and family history, cognitive function, other functional
behaviors, peripheral biomarkers (e.g., nutritional
deficiency), and, increasingly, brain imaging. Reliance
on these diagnostic tools has led to significant health
disparities in diagnosing, treating, and studying dementia
and Alzheimer’s disease across the U.S. and around the
world.

Even within high-resourced environments, by the time
traditional Alzheimer’s symptoms of declining memory
are noteworthy, the neurodegenerative trajectory is
believed to be on a near-irreversible course. While there
is no definitely curative drug treatment for the disease at
present, delaying onset by just 5 years could potentially
cut societal prevalence in the U.S. by 50% (2, 3). Early
detection, and thus early intervention, could improve
quality of life, helping alleviate symptoms and slow the
progression of disease (4, 5).

Dementia is an insidious disease that takes up
to decades to develop, and its nature provides the
opportunity for prediction through subtle clinical changes
that may appear years before a person meets the criteria
for diagnosis. Increasingly, the use of digital biomarkers
is being explored for screening and diagnosis, while
‘digital therapeutics’ are also emerging (5, 6). Digital
biomarkers are physiological and behavioral measures
collected from participants through digital tools that can
be used to explain, influence, or predict health-related
outcomes (7). The deep penetration of smartphones with
voice recorders, coupled with the fact that production
of speech involves multiple cognitive domains,
suggests that voice-based digital biomarkers could
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open possibilities for a scalable, economical (automated
transcription costs ~$1 per 15-minute sample) (8), and
widely accessible (due to real-time administration and
scoring of neuropsychological tests) test to detect changes
in individuals who have not yet met the threshold for
clinical symptoms (9).

The goal of this study was to examine whether
metrics extracted from digital audio recordings could
serve as potential digital voice biomarkers, through
the development of a predictive algorithm for earlier
detection of cognitive dysfunction, and thereby improve
outcomes.

Methods

Ethics

The study protocol was approved by the Institutional
Review Board of Boston University, Boston,
Massachusetts. All participants provided informed
consent at the time of enrollment into the study.

Study participants

The first-generation (Gen 1) cohort of the Framingham
Heart Study (FHS) was enrolled in 1948 with 5,209 adult
subjects from Framingham, Massachusetts, USA; the
second-generation cohort (Gen 2, the biological children
of the Gen 1 cohort and their spouses), in 1971; and the
third-generation cohort (Gen 3), in 2001 (10). To reflect
the growing racial/ethnic diversity of the region, the
multi-ethnic Omni Generation 1 (OmniGen 1) and Omni
Generation 2 (OmniGen 2) were enrolled beginning in
1994 and 2003, respectively.

Since 1975, participants in the FHS have been under
surveillance for incident dementia (11). This has entailed
having adults and older adolescents undergo periodic
neuropsychological exams consisting of a set of standard
tests to evaluate cognitive function (see details below).
The audio for most of these sessions (see details below)
has been recorded since 2005, creating a database of
over 5200 sessions in August 2017. We analyzed a subset
of digital voice recordings from 146 participants, all of
whom had consensus-confirmed normal cognition, MCI,
or dementia diagnoses.

Demographic and clinical variables

Standard demographic data were collected at each
neuropsychological exam for all participants, including
age, sex, marital status, occupation type, and highest
level of education obtained. Clinical data—which were
collected through separate, regular general health
exams—included laboratory data (serum glucose, low-
and high-density lipoprotein cholesterol, triglyceride,
and creatinine levels), body anthropomorphics (height,
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weight, body mass index, and hip and waist girth),
physiological data (heart rate and blood pressure), and
health behavior data (self-reported mood, physical
activity, alcohol consumption, diet, sleep, and smoking).
For analysis purposes, we extracted these clinical data
from the general exam that had been performed closest
to the time of consensus dementia determination (see
below). We standardized quantitative clinical variables
by taking the difference between the most recent measure
and the historical maximum and minimum values.

Neuropsychological exams and consensus
determination of dementia labels

These exams consisted of both closed and open-ended
questions as well as recall tasks. Testing included the
Wechsler Memory Scale Logical Memory, Verbal Paired
Associates, and the Wechsler Adult Intelligence Scale
Digit Span tests (forward and backward).

The Logical Memory test is a narrative recall task in
which the proctor reads a story aloud and then asks the
subject to recall the components of the story back to the
examiner. The Verbal Paired Associates task requires the
proctor to read the participant a list of words consisting
of 10 word pairs: 6 “easy”, related pairs (e.g., words
that are frequently associated, such as “stop-go”) and 4
“hard”, unrelated pairs (e.g., words that are not typically
associated, such as “bronze-hop”). The proctor then says
one of the words and asks the participant to say which
word went with it. This is administered three times, each
time with feedback: either “that’s right” or “no, that one
was [correct answer]”. During each of the three trials, the
participant is consistently presented only with the first
word of each pair and asked to provide the corresponding
word.

For the Digit Span Forward test, the proctor reads
the participant a span of numbers, starting with three
numbers in a monotone voice, and the participant must
repeat the numbers. If the sequence is correct, they move
onto a span of numbers one longer, and if it is incorrect,
they are given a second chance for each span length.
For the Digit Span Backward test, the proctor reads a
sequence of numbers that the participant must repeat in
reverse order.

Dementia determinations took place at various times
after neuropsychological testing/voice recordings. For
these reviews, the consensus diagnostic panel used a scale
analogous to the Clinical Dementia Rating scale to classify
dementia severity on a scale of “none” (0) to “severe”
(3), modified with additional intermediates between
each whole integer point. Participants were flagged for
dementia review if they had a drop in Mini-Mental State
Examination (MMSE) score, if they presented potential
cognitive impairment at a neuropsychological exam,
and/or were referred by FHS staff or a family member.
Test results were reviewed by a consensus panel that
included at least one neurologist and neuropsychologist.
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The review panel determined cognitive status markers on
a case-by-case basis using supporting sources of medical
information (e.g., neuropsychology and neurology
exams, family interviews, FHS health exams, and external
medical records). Details of the consensus process have
been published previously (11-13). This consensus
diagnosis of dementia and any subtype diagnosis (e.g.,
Alzheimer’s disease) served as the gold standard against
which the predictive models were developed. The
consensus diagnosis for each sample was used only to
train (as target labels) and quantify the performance of
the predictive models and were not used as inputs to
them. For the purposes of this project, all participants
whose recordings were used for the cognitively normal
(CN) analyses were verified to be CN at the time of the
recording.

Audio recordings of neuropsychology exams

Digital voice recordings consisted of a structured
conversation between a proctor, who was a trained
clinical staff member of the FHS, and the FHS participant,
who may or may not have been cognitively impaired.
Through a semi-supervised approach that complemented
automated speech-to-text with manual tagging of a
few relevant parts of the neuropsychological test, all
personally identifiable information was removed from
recordings before linking to other deidentified FHS health
data.

Overview of acoustic analysis

Acoustic analysis, speech transcription, and language
processing were used to automatically reduce voice
segments from recordings into a set of candidate digital
biomarkers. Specifically, we extracted acoustic variables
(capturing the temporal and spectral characteristics of a
person’s voice) from all recordings of neuropsychological
testing.

Language-based variables were computed from the
annotated text obtained through both automated (IBM
Watson) and manual transcriptions. For hand-transcribed
recordings, linguistic variables were extracted that
captured characteristics of the grammar and complexity
of the responses. In the automatically transcribed
recordings, the quality of the transcription was not
sufficient to allow linguistic analysis. We could compute
variables relating to the timing and frequency of words,
however, which we termed “paralinguistic” variables.

Automated transcription generation

IBM Watson’s application program interface (API)
transcribed the recordings, and provided the best guess
for the word, a measure of uncertainty that the word was
correct, and start/end timestamps at a precision of 0.01
s. The API then prioritized for manual diarization based

on age, dementia status, and specific neuropsychological
test completion. This approach provided 1) high-accuracy
word and pause lengths, 2) the ability to precisely
identify snippets of anonymized audio when combined
with manual diarization, and 3) a measure of text
translatability in the form of word uncertainties.

For 248 recordings (of which 200 consented by
participants to be analyzed by a commercial company),
diarization was manually completed to distinguish
between speakers for the Logical Memory, Verbal Paired
Associates, and Digit Span tests. Codes used to refer to
each subsection of interest are shown in Supplementary
Table 1.

Manual transcription generation

For 140 recordings (of which 127 consented by
participants to be analyzed by a commercial company), a
professional transcription company created timestamped,
diarized transcriptions to gauge the efficacy of the
automated transcription and diarization method. These
transcriptions provided high-accuracy, grammatically
meaningful representations of the audio files. The
professional transcriptions were double-checked by the
research team at Boston University to confirm relative
accuracy.

Acoustic variable extraction

To generate acoustic variables, the audio corresponding
to participant speech was extracted, which included
both diarized automated-transcription files and manual
diarizations. Variables from the raw waveform were
then extracted using the Massachusetts Institute of
Technology’s featurization algorithm and the openSMILE
toolkit (14) with a frame size of 20 ms and a step size
of 10 ms. Spectral and temporal characteristics of
a subject’s voice, including mel-frequency cepstral
coefficients (MFCCs), pitch, and root-mean-square energy
(RMS), were computed across these windows based on
the variable list associated with the 2013 Interspeech
Paralinguistics Challenge (15). Voicing probability
was used to remove extended periods of silence from
the samples, and the energy-based variables were
normalized. Aggregation was done over the frames,
computing mean, median, standard deviation, minimum,
and maximum values to generate the final acoustic
variable set. The following variables were computed
and used: MFCCs, fundamental frequency (F0), voicing
probability, local jitter, difference of differences jitter,
local shimmer, harmonics to noise ratio (HNR), power
spectrum (audspec), relative spectral transform (RASTA),
zero crossing rate, and RMS.
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Paralinguistic variable extraction (automated
transcriptions)

After processing, we computed the paralinguistic
variables from automated transcription (Watson) on
each of the sections identified as well as the full text.
Detailed descriptions of these variables and codes are
provided in Supplementary Table 2. Although computing
variables on the full text added additional noise to the
signal due to inclusion of the proctor’s speech, this was
standard across all exams due to their scripted nature.
To featurize these data, we considered word use, speech
time, word certainty, and Bristol-norm variables (16).
Word use variables included the number of words, the
fraction of stop words used, and the fraction and count
of common words. Common words were defined as the
top 10 most frequently used words for each section, and
they can be viewed as a problem-specific assessment
of how similar the participant’s answer was to that of
others. Speech time variables included the total speaking
time, mean and standard deviation of word and pause
lengths (in seconds), fraction of time spent pausing, total
section time, and fraction of that section the participant
was speaking. The average and standard deviation of
word uncertainty provided by the Watson algorithm
were also included. Bristol norm variables quantified
the age of word acquisition, imageability, familiarity,
neighborhood size, mean log bigram frequency, and
number of letters, syllables, and phonemes for a subset
of words. The full set of words in the diarized sections
was sorted for variant forms of the same word using the
Princeton Wordnet lemmatizer (wordnet.princeton.edu).
We computed the mean and standard deviation of these
properties as well as the fraction of words used that have
computable Bristol norms.

Linguistic variables extraction (manual
transcriptions)

Manually transcribed files contained fully diarized,
accurate, and grammatically meaningful text. The
fidelity of these transcriptions allowed applying
natural language processing (NLP) techniques
to extract information from the grammar of the
sentences to evaluate the complexity of the responses.
Additional variables included embeddings (numerical
representations of text) from pretrained language
models such as doc2vec (17). Specifically, one model was
trained to learn representation from the participant’s
responses, and another to learn representation for the
whole conversation. These two embeddings were then
concatenated to use as variables for the text classification
task. Each model was trained using the distributed
bag-of-words training algorithm, with 100-dimension
embedding and a window size of 5, negative sampling
of 10, and minimum count threshold of 5. Linguistic
variables were therefore generated based on the whole
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interview, as opposed to the paralinguistic variables,
which were generated based on different sections of the
interview as well as the whole session.

To analyze the use of production rules, we used the
Charniak-Johnson parser trained on the Wall Street
Journal (18, 19). We also computed the frequency
of the top 50 most common production rules over all
transcriptions (20). The mean, standard deviation, and
5th, 50th, and 95th percentiles of the tree height; number
of phrases; and parser score of the selected tree over all
sentences were also computed. The top 10 production
rules found with their relative frequencies are listed in
Supplementary Table 3. Bristol norm variables were
computed as for the automated transcriptions with the
addition of a part-of-speech tagger implemented in the
natural language toolkit (NLTK) Python module (21) to
improve lemmatization. We also computed qualitative
measures such as the fraction of nonverbal breaks (e.g.,
filler words, laughing, crosstalk) over the total number
of words spoken by each participant. Finally, additional
measures of syntactic complexity using the L2 syntactic
complexity analyzer were computed (22). This analysis
returns the frequency of words, sentences, verb phrases,
clauses, T-units, dependent clauses, complex T-units,
coordinate phrases, and complex nominals, and takes
14 ratios of these frequencies that represent various
measures of sentence complexity. These variables were all
generated based on the whole transcript, as opposed to
different sections of it.

Predictive model development

Participant cognitive status—no impairment, MCI, or
dementia—was modelled from available demographic,
clinical, acoustic, and linguistic and/or paralinguistic
variables. Specifically, two machine-learning classifiers
were trained to predict cognitive status: one using
demographic, clinical, acoustic, and linguistic variables
for participants with hand-transcribed recordings and one
using demographic, clinical, acoustic, and paralinguistic
variables for those with automated transcriptions. Figure
1 shows the categories of variables available for each
subset of recordings.

For both of these machine-learning classifiers, the
audio data originated from the voice recordings of
neuropsychological testing. In contrast, the clinical data
were the most recent available at the time of dementia
determination, which came after a significant time delay
from the neuropsychological testing in some cases. This
difference in time of information acquisition reflects
typical real-world practice, i.e., using the results of
prior neuropsychological tests combined with the most
recent clinical information when determining a patient’s
dementia status.

We first applied the Disparate Impact Remover (DIR)
(23) to account for age and sex biases in the data. This was
an unsupervised preprocessing step that transformed the

794



JPAD - Volume 9, Number 4, 2022

Figure 1. Description and availability of variables for different types of recordings (before selection)

Demographics Clinical (54 Acoustic (227 Paralinguistic (156 | Linguistic (162
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Figure 2. Mean area under the receiver operating characteristic (AUROC) curve and 95% CI for age- and sex-adjusted
logistic regression models across 100 splits of group-stratified cross-validation, among participants with automated
transcriptions
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variables such that they could not be used to distinguish
age/sex while also preserving relevant information. DIR
has a hyper-parameter (repair value), between 0 and 1,
that sets the deconfounding level of the transformation.

Because there was near-zero bias in the dataset, we set the
repair value to 1 for all analyses except for the common
subset. For the latter analysis, a repair value of 0.7 was
used.
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Figure 3. Predicted area under the receiver operating
characteristic curves for participants with mild
cognitive impairment, using the adjusted “Acoustic +
Paralinguistic” logistic regression model discriminating
healthy controls from those with dementia. The Y-axis
represents the histogram count of subjects in the test set,
and the vertical lines represent the means of the curves
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We then used the minimum redundancy/maximum
relevance (MRMR) method (24), which selects the top-
ranking variables by maximizing their relevance towards
the label (F-test) and minimizing their redundancy
(correlation). To use MRMR in cross-validation, the top-N
variables are chosen in each fold of nested training before
hyperparameter tuning. Variables consistent across folds
(selected as top-N in different folds) are identified, and
the model hyperparameters are tuned only on them.
N was chosen to be one of {10, 20, .., 50} as part of the
hyperparameter tuning.

A logistic regression classifier was trained and used
the mean area under the receiver operating characteristic
curve (AUROC) scores across a group-stratified shuffle (N
=100, 80/20 train/test split) for cross-validation, in which
samples from subjects were held together in either train/
test split (group), cohort labels were balanced across
train/test split (stratified), and this process of train/test
splitting was repeated n = 100 times (shuffle) and metric
spread reported.

Since analyses were limited to fully deidentified
recordings and records, only a small subset from the
entire dataset was used for analysis. Considering
recordings only from those who had dementia (clinically
diagnosed dementia rating of 1, 2, or 3; n = 110) or CN
(dementia rating of 0; n = 35), a cohort of 145 recordings
emerged from which to test the predictive model (cohort
demographics for all three recording groups with
automated transcripts are provided in Supplementary
Table 4).
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Results

Automated transcription

We first considered the set of participants (n = 78) with
a total of 200 automatically transcribed (via IBM Watson)
recordings. The task was broken down into three binary
classifications to discriminate between 1) CN controls
and those with dementia, 2) CN and those with MCI,
and 3) those with MCI versus dementia. (We also tried a
single model with pairwise ranking objectives of CN <
MCI < dementia, and the resulting area under the receiver
operating characteristic curve [AUROC] for pairwise or
1-vs-all discrimination was comparable to the current
approach.)

In computing the demographics for each set of
transcripts, the same participant demographics could be
represented in multiple subgroups. This stems from the
fact that some participants contributed more than one
recording and in subsequent recordings had progressed
to MCI and/or dementia. CN persons (n = 35 recordings)
had a median age of 83; those with MCI (N = 55
recordings), a median age of 81; and those with dementia
(n = 110 recordings), a median age of 83. There were no
significant differences among these recording subgroups
in terms of age or sex distribution (Supplementary Table
4).

As seen in Figure 2, the use of demographic and
clinical variables, alone or combined, yielded AUROC
scores of < 0.70 in all comparisons. The scores for acoustic
and paralinguistic variables each approached or exceeded
0.80. Putting all four types of variables together offered
performance in the 0.80-0.90 AUROC range.

As an additional step of validation, we removed all
MCI recording data and reran the CN-versus-dementia
model for prediction. Figure 3 shows that the mean of
predicted scores for MCI recordings lay between the two
extreme groups, as expected. Similarly, CN-vs-MCI and
MClI-vs-dementia models and their held-out samples are
shown in Supplementary Figures 1 and 2, respectively.

Ultimately, across the various sets of variables,
paralinguistic variables were the primary drivers of
discrimination between CN recordings and dementia
recordings, with an AUROC of 0.87 by themselves for this
comparison. Variables selected to train logistic regression
classifiers for CN versus MCI or dementia are shown
in Figure 4. Of the 20 selected variables, 12 captured
paralinguistic features (e.g., speaking time, section time,
word mean time, etc.) from the interview and not from
the content of the transcription. In addition, the selected
variables belonged to different parts of the interview.

Of particular interest were the speaking time variables.
Recordings from those with dementia usually lingered
(“section_time” variables) on the Verbal Paired Associates
task (Figure 4), but typically took half as long to complete
the Logical Memory test, likely because fewer story
details are recalled. Another major word feature was the
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Figure 4. Paralinguistic variables used to train a logistic regression classifier for cognitively normal (CN) participants
versus those with mild cognitive impairment (MCIL; green circles) or dementia (DM; blue circles)
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fraction of stop words used throughout the full exam;
recordings from participants with dementia were likely
to include sentences with a higher rate of stop words,
resulting in this variable being predictive of cognitive

impairment. Word certainty, which indicates the level
of confidence the Watson model has in transcribing the
word, was much higher in the participants with dementia.
Recordings from participants with dementia also had a
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low mean age of word acquisition, with high mean and
low variance word certainty.

Manual transcriptions

Manual transcriptions (n = 127) were available for
a subset of 113 participants. Manual transcription can
reach higher accuracy than automated (IBM Watson-
based) transcriptions, which often do not return coherent
sentences needed for accurate grammar analysis.

Similar to Supplementary Table 4, Supplementary
Table 5 provides demographics based on the
demographics of the participant at the time of recording
and some participants’ demographic information
is duplicated in each of the 3 subgroups. Since only 9
recordings were from those with MCI, we merged their
data with recordings from participants with dementia (n
=32) and compared to recordings from CN.

Table 1. Comparison of automatically transcribed
paralinguistic features and manually transcribed
linguistic features to discriminate between healthy
controls (n = 22 recordings) and participants with
mild cognitive impairment (MCI) or dementia (n = 37
recordings)

Mean AUROC (95% CI)
0.83 (0.81-0.86)
0.91 (0.89-0.93)
0.92 (0.90-0.93)

Type of variables
Paralinguistic only
Linguistic only

Paralinguistic + linguistic

In this group, 49% of the recordings in CN were from
participants 67 years or younger (the lowest age in the
subgroup with cognitive impairment). To allow the
de-confounding algorithm to work, we trained the model
on data from recordings of participants older than 67
(total n = 85; Supplementary Table 6). Similar results
were obtained in modelling the unfiltered dataset (data
not shown). After excluding these samples, there were
significantly more recordings of women in the subgroup
with MCI or dementia (73% vs 50% in CN subgroup; P =
0.04).

As seen in Figure 5, demographic and clinical variables
yielded AUROC scores < 0.70 for discrimination of CN
recordings from recordings from those with cognitive
impairment, both individually and when combined.
Acoustic and linguistic variables each yielded AUROC
scores > 0.80, as did all other combinations of variable
sets.

Similar to the automated-transcription findings, mean
age of word acquisition appeared to be an important
feature in the manually transcribed dataset (Figure
6). Overall, the results for linguistic variables in the
manual-transcription dataset were similar to those for
paralinguistic variables in the automated-transcription
dataset for discriminating CN from recordings from those
with cognitive impairment.
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Paralinguistic versus linguistic variables

Demographic characteristics of the 45 participants
who had both manual and automated transcription data
(n = 59 recordings) are shown in Supplementary Table 7;
demographic data was duplicated from those participants
who contributed recordings to more than one cognitive
status group. Age and sex did not differ significantly by
cognitive status in this common dataset.

Table 1 shows the results for modelling discrimination
of recordings from CN from those with cognitive
impairment. High-quality manual transcription from
interviews improved model performance, both alone and
combined with data from automated transcription, as
would be expected.

Discussion

This study illustrates how voice might be a useful
tool in identifying persons with dementia. From a
combination of linguistic, paralinguistic, acoustic,
demographic, and clinical characteristics, it might be
possible to predict cognitive status with a relatively high
degree of certainty. Our models based on paralinguistic
variables derived from automated transcription
performed better (AUROC 0.87) than those based on
simple acoustic variables (AUROC 0.79). In addition,
when a good manual transcription was available,
natural language processing techniques and embeddings
significantly improved predictive accuracy (AUROC
0.92 in the common subset). Thus, these models might
be applicable to a variety of situations ranging from low-
quality audio captured over phone conversations to high-
fidelity transcriptions of in-person visits.

This retrospective study adds to recent research and
applications proposing the use of voice as a digital
biomarker for disease progression and screening not only
for dementia (25, 26) but also across therapeutic areas
(27-29). Digital biomarkers can be measured in real time
and are generally less expensive to compute—automated
transcription of neurophysiological tests costs ~$1 per
15-minute sample compared with $2 per minute for
manual transcription—and less invasive than traditional
biomarkers.

While these initial findings are promising, experiments
must be repeated with larger digital datasets of
medical and audio samples on which to train and test
algorithms and in more racially and culturally diverse
populations. In addition, better audio quality will
translate to more accurate automated diarization and
transcriptions and will enhance the specificity of variables
computed purely on acoustic patterns. Supplementing
the dataset with other health-related data sources (e.g.,
minute-level heart rate and steps) is also recommended
for future prospective studies, to provide even better
contextualization data to enhance accurate clinical
interpretation of digital biomarkers (30). Finally, while

798



JPAD - Volume 9, Number 4, 2022

Figure 6. Linguistic variables used to train a logistic regression classifier for cognitively normal (CN) participants
versus those with mild cognitive impairment (MCI) or dementia (DM)
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the current work shows good discrimination power of
the models proposed, further research is needed to study
model calibration to specific applications and settings
(31).

The implications of this study are potentially globally
significant. There is currently no single assessment
method that can be applied uniformly regardless of a
person’s age, sex/gender, education, language, or culture.
All current cognitive screening and more comprehensive
neuropsychological test protocols are confounded by
these factors. Recording of voice is possible even in the
lowest-resourced settings. Further, speech production,
which involves multiple cognitive domains, is a skill that
most people are able to do. Thus, digital voice indices
could perhaps serve as highly predictive digital voice
biomarkers of Alzheimer’s disease, possibly providing a
low-cost, easily scalable worldwide solution to address
persistent health disparities in diagnosis, treatment,
and clinical studies of cognition-related disorders.
Importantly, the possibility of an economical and
accessible voice-based digital biomarker test for cognitive
impairment could allow early detection in people who
have not yet met the threshold for clinical symptoms and
trigger interventions that can alter the trajectory of change
or prevent disease altogether. As research is translated
into practice, applications must be built with a privacy-
first approach, as voice is arguably the carrier of the most
sensitive information pertaining to an individual.

Funding: This work was supported by Defense Advanced Research
Projects Agency contract FA8750-16-C-0299 (D.S., A.S.,, M.S,, C.L., RK,, L.F.);
National Heart, Lung, and Blood Institute contracts N01-HC-25195 and
HHSN2682015000011 and National Institute on Aging grants R01-AG016495,
R01-AG008122, R0O1AG049810, RF1AG054156, R0O1 AG062109, and U19 AG068753
(all R.A.). The sponsors had no role in the design and conduct of the study;

in the collection, analysis, and interpretation of data; in the preparation of the
manuscript; or in the review or approval of the manuscript.

Acknowledgments: The authors would like to thank Filip Jankovic for
engineering support.

Conflict of interest disclosure: Drs. Stiick, Signorini, Kainkaryam, and Foschini
and Ms. Lemke and Ms. Sandoval are employees of Evidation Health, Inc., a
company whose mission is to measure health in everyday life using technology. Dr.
Au is a scientific advisor to Signant Health and Biogen; none of the current work
described is related to her advisory roles. All other authors declare no conflict of
interest.

Ethical standard: The study protocol was approved by the Institutional
Review Board of Boston University, Boston, Massachusetts, and the research was
conducted in accordance with the Helsinki Declaration.

Open Access: This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http:/ /creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

Open Access: This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses /by /4.0/), which permits use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

References

1. Alzheimer’s Disease International. World Alzheimer Report 2015: The Global
Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends.
2015. Alzheimer’s Disease International, London.

2. Wilson D, Peters R, Ritchie K, Ritchie CW. Latest advances on interventions
that may prevent, delay or ameliorate dementia. Ther Adv Chronic Dis.
2011;2(3):161-173. https:/ / doi.org/10.1177 / 2040622310397636

3. Zissimopoulos J, Crimmins E, St. Clair P. The value of delaying Alzheimer’s
disease onset. Forum Health Econ Policy. 2014;18(1):25-39. https:/ /doi.
org/10.1515/ fhep-2014-0013

4. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention,
intervention, and care: 2020 report of the Lancet Commission. Lancet.
2020;396(10248):413-446. https:/ / doi.org/10.1016 /s0140-6736(20)30367-6

5. Kourtis LC, Regele OB, Wright JM, Jones GB. Digital biomarkers for

799



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alzheimer’s disease: the mobile / wearable devices opportunity. npj Digit Med.
2019;2:9. https:/ / doi.org /10.1038 / s41746-019-0084-2

Shuren J, Doraiswamy PM. Digital therapeutics for MCI and Alzheimer’s
disease: a regulatory perspective—Highlights From The Clinical Trials on
Alzheimer’s Disease conference (CTAD). ] Prev Alzheimers Dis. 2022;9:236-
240. https:/ / doi.org/10.14283 /jpad.2022.28

Coravos A, Goldsack JC, Karlin DR, et al. Digital medicine: a primer
on measurement. Digit Biomark. 2019;3(2):31-71. https://doi.
org/10.1159/000500413

Amazon Transcribe Medical pricing. https:/ /aws.amazon.com/transcribe /
pricing/

Eyigoz E, Mathur S, Santamaria M, Cecchi G, Naylor M. Linguistic markers
predict onset of Alzheimer’s disease. EClinicalMedicine. 2020;28:100583.
https:/ /doi.org/10.1016 /j.eclinm.2020.100583

Splansky GL, Corey D, Yang Q, et al. The third generation cohort of the
National Heart, Lung, and Blood Institute’s Framingham Heart Study: design,
recruitment, and initial examination. Am J Epidemiol. 2007;165(11):1328-1335.
https:/ /doi.org/10.1093/ aje / kwm021

Satizabal CL, Beiser AS, Chouraki V, Chéne G, Dufouil C, Seshadri S. Incidence
of dementia over three decades in the Framingham Heart Study. N Engl ] Med
2016;374(6):523-532. https:/ / doi.org/10.1056 / nejmoal504327

Au R, Piers R], Devine S. How technology is reshaping cognitive assessment:
Lessons from the Framingham Heart Study. Neuropsychology. 2017;31(8):846-
861. https:/ /doi.org/10.1037 /neu0000411

Farmer ME, White R, Kittner SJ, et al. Neuropsychological test performance
in Framingham: a descriptive study. Psychol Rep. 1987;60(3 Pt 2):1023-1040.
https:/ / doi.org/10.1177/0033294187060003-201.1

Eyben F, Weninger F, Gross F, Schuller B. Recent developments in openSMILE,
the Munich open-source multimedia feature extractor. Proceedings of the 21st
ACM International Conference on Multimedia. 2013:835-838. https:/ /doi.
org/10.1145/2502081.2502224

Schuller B, Steidl S, Batliner A, et al. Paralinguistics in speech and language—
state-of-the-art and the challenge. Comput Speech Lang. 2013;27(1):4-39.
https:/ /doi.org/10.1016 /j.cs1.2012.02.005

Stadthagen-Gonzalez H, Davis CJ. The Bristol norms for age of acquisition,
imageability, and familiarity. Behav Res Methods. 2006;38(4):598-605. https:/ /
doi.org/10.3758 /bf03193891

Le Q, Mikolov T. Distributed representations of sentences and documents.
Proceedings of the 31st International Conference on Machine Learning, PMLR.
2014;32:1188-1196. https:/ / dl.acm.org/doi/10.5555 / 3044805.3045025
Charniak E, Johnson M. Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics. 2005:173-180. https:/ /doi.
org/10.3115/1219840.1219862

Pitler E, Nenkova A. Revisiting readability: a unified framework
for predicting text quality. Proceedings of the Conference on Empirical
Methods in Natural Language Processing. 2008:186-195. https:/ /dl.acm.org/
doi/10.5555/1613715.1613742

PREDICTION OF AD FROM VOICE RECORDINGS

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Fraser KC, Hirst G, Meltzer JA, Mack JE, Thompson CK. Using statistical
parsing to detect agrammatic aphasia. Proceedings of the 2014 Workshop on
Biomedical Natural Language Processing (BioNLP). 2014:134-142. http://
dx.doi.org/10.3115/v1/W14-3420

Bird S. NLTK: the natural language toolkit. Proceedings of the COLING/
ACL on Interactive Presentation Sessions. 2006:69-72. http:/ /dx.doi.
org/10.3115/1225403.1225421

Lu X. Automatic analysis of syntactic complexity in second language
writing. Int ] Corpus Linguist. 2010;15(4):474-496. https:/ /doi.org/10.1075/
ijcl.15.4.021u

Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S.
Certifying and removing disparate impact. Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
2015:259-268. https:/ / doi.org/10.1145/2783258.2783311

Ding C, Peng H. Minimum redundancy feature selection from microarray
gene expression data. ] Bioinform Comput Biol. 2005;3(2):185-205. https:/ / doi.
org/10.1142/0219720005001004

Gold M, Amatniek J, Carrillo MC, et al. Digital technologies as biomarkers,
clinical outcomes assessment, and recruitment tools in Alzheimer’s disease
clinical trials. Alzheimers Dement (N.Y.). 2018;4:234-242. https://doi.
org/10.1016/j.trci.2018.04.003

Fraser KC, Meltzer JA, Rudzicz F. Linguistic features identify Alzheimer's
disease in narrative speech. ] Alzheimers Dis. 2016;49(2):407-422. https:/ /doi.
org/10.3233 /jad-150520

Lansford KL, Liss JM. Vowel acoustics in dysarthria: speech disorder diagnosis
and classification. ] Speech Lang Hear Res. 2014;57(1):57-67. https:/ / doi.
org/10.1044 /1092-4388(2013 /12-0262)

Rutkove SB, Narayanaswami P, Berisha V, et al. Improved ALS clinical trials
through frequent at-home self-assessment: a proof of concept study. Ann Clin
Transl Neurol. 2020;7:1148-1157. https:/ / doi.org/10.1002 / acn3.51096

Liss JM, Krein-Jones K, Wszolek ZK, Caviness JN. Speech characteristics
of patients with pallido-ponto-nigral degeneration and their application
to presymptomatic detection in at-risk relatives. Am J Speech Lang Pathol.
2006;15(3):226-235. https:/ / doi.org/10.1044 /1058-0360(2006 / 021

Chen R, Jankovic F, Marinsek N, et al. Developing measures of cognitive
impairment in the real world from consumer-grade multimodal sensor
streams. Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2019:2145-2155. https:/ /dl.acm.org/
doi/10.1145/3292500.3330690

Steyerberg EW. Calibration. In: Clinical Prediction Models: A Practical
Approach to Development, Validation, and Updating. Springer Science +
Business Media LLC. New York, 2009, pp 270-278.

© The Author(s) 2022

How to cite this article: N. Tavabi, D. Stiick, A. Signorini, et al. Cognitive Digital
Biomarkers from Automated Transcription of Spoken Language. J Prev Alz
Dis 2022;4(9):791-800; http:/ / dx.doi.org/10.14283 /jpad.2022.66

800



